ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

УДК 577.151 https://doi.org/10.29235/1561-8323-2021-65-5-568-575 Поступило в редакцию 30.06.2021 Received 30.06.2021

А. Б. Саченко, Я. В. Диченко, А. В. Янцевич, член-корреспондент С. А. Усанов

Институт биоорганической химии Национальной академии наук Беларуси, Минск, Республика Беларусь

ДИЗАЙН СТРУКТУРЫ ХИМЕРНОГО БЕЛКА ДНК-ЭКЗОТРАНСФЕРАЗЫ БЫКА И SSB-БЕЛКА *E. COLI*

Аннотация. С целью изучения влияния дополнительного ДНК-связывающего домена SSB-белка *E. coli*, присоединенного к транкированной и нативной ДНК-экзотрансферазе быка, на ДНК-аффинность и стабильность фермента, проведен анализ траекторий молекулярной динамики и пространственных структур гомологичных моделей химерного белка с различными линкерами. Установлено, что более предпочтительным для присоединения SSB-белка является С-концевая последовательность фермента, при этом прогнозируемая стабильность транкированного химерного фермента выше, чем у нативного. Согласно данным молекулярной динамики, введение линкеров между двумя белками для нативной (GGGGSGGGGGGGGGGGG, GGGSGGGS и TCT) и транкированной (GGSGGGSGG, GGGGGGG, GTGSGT и 5xGGGGS) формы фермента не только способствует повышению его стабильности, но и увеличивает взаимную подвижность ДНК-аффинных доменов.

Ключевые слова: ДНК-экзотрансфераза быка (TdT), EcSSB, молекулярная динамика, химерный фермент, оцДНК-связывающий белок (SSB), полипептидные линкеры

Для цитирования. Дизайн структуры химерного белка ДНК-экзотрансферазы быка и SSB-белка *E. coli* / А. Б. Саченко [и др.] // Докл. Нац. акад. наук Беларуси. – 2021. – Т. 65, № 5. – С. 568–575. https://doi.org/10.29235/1561-8323-2021-65-5-568-575

Antos B. Sachanka, Yaraslau U. Dzichenka, Aliaksei V. Yantsevich, Corresponding Member Sergei A. Usanov

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

DESIGN STRUCTURE OF FUSION PROTEIN OF BOVINE DNA EXOTRANSFERASE AND *E. COLI* SSB PROTEIN

Abstract. The analysis of the trajectories of molecular dynamics simulation and spatial structures of homologous models of fusion protein with various linkers was performed to understand the effect of the additional DNA-binding domain of the *E. coli* SSB protein attached to the truncated and native bovine DNA exotransferase on its stability and activity. It is found that the C-terminus of the enzyme is the preferred end for attachment of the *E. coli* protein, while the stability of the truncated fusion enzyme is higher than the native one. According to molecular dynamics data, introducing linkers between two proteins for the native (GGGGSGGGGGGG, GGGSGGGS, and TCT) and truncated (GGSGGGSGG, GGGGGG, GTGSGT, and 5xGGGGS) forms of the enzyme not only improves its stability, but also increases the mutual mobility of DNA-affinity domains.

Keywords: bovine DNA exotransferase (TdT), EcSSB, molecular dynamics, fusion enzyme, DNA binding protein (SSB), polypeptide linkers

For citation. Sachanka A. B., Dzichenka Y. U., Yantsevich A. V., Usanov S. A. Design structure of fusion protein of bovine DNA exotransferase and *E. coli* SSB protein. *Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2021, vol. 65, no. 5, pp. 568–575 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-5-568-575

Введение. ДНК-экзотрансфераза, или терминальная дезоксинуклеотидил-трансфераза (TdT) – фермент, который катализирует произвольное добавление нуклеотидов к 3'-концевой последовательности одноцепочечной ДНК, используя дезоксинуклеотид-5'-трифосфаты в качестве субстрата [1]. TdT – один из ферментов, обеспечивающих формирование библиотек антител в клетках иммунной системы. В частности, ДНК-экзотрансферазы отвечают за добавление небольшого числа нуклеотидов к неспаренным участкам ДНК во время перестройки гена [2]. TdT может катализировать полимеризацию нескольких сотен [3] или даже тысяч нуклеотидов независимо от природы праймера. TdT используются в молекулярной биологии для мечения 3'-концевых последовательностей ДНК модифицированными нуклеотидами (такими как ddNTP или радиоактивно

568

меченными нуклеотидами), а также для удлинения праймеров, секвенирования ДНК и в качестве маркера апоптоза [4]. Одним из перспективных направлений является ее использование для диагностики и лечения рака, связанного с ДНК-метилтрансферазой [5]. Помимо полимеризации нуклеотидов в растворе, TdT также может использоваться для синтеза полинуклеотидных щеток *in situ* методом прививки и для синтеза ДНК *de novo* [6]. Одной из ключевых особенностей TdT быка является его высокая активность и возможность экспрессии в клетках *E. coli* с сохранением активности [7]. Кроме того, транкирование TdT (удаление первых 161 N-концевых аминокислотных остатков) способствует существенному повышению активности фермента в растворе, содержащем ионы кобальта (ионы металлов являются неотъемлемой частью активного центра фермента), однако в растворе, содержащем ионы магния, эффективность фермента, наоборот, снижается [8].

Создание белков слияния TdT и ДНК-связывающих белков (SSB) является одним из перспективных способов для повышения активности и термостабильности фермента. Данный подход хорошо себя зарекомендовал при создании химерных полимераз путем слияния их с белками, связывающимися с ДНК семейства *Sulfolobus solfataricus* [9]. С целью рационального дизайна химерного белка (ориентация доменов и последовательность междоменного линкера) проведен структурный анализ ряда вариантов. В качестве ДНК-связывающего белка для слияния использовали белок, связывающийся с одноцепочечной ДНК из *E. coli* (EcSSB). EcSSB связывается с одноцепочечной ДНК с высокой аффинностью, но с низкой специфичностью к последовательности, что позволяет использовать различного вида, длины и семейства одноцепочечную ДНК в качестве субстратов [10]. К тому же он обладает высокой стабильностью, устойчивостью к тепловой (потеря 10 % активности после кипячения) и щелочной (белок не теряет активность при рН 10,0) денатурации, что так же должно способствовать увеличению стабильности химерного фермента [11].

Цель данной работы – дизайн химерного белка слияния ДНК-экзотрансферазы быка с белком, связывающимся с одноцепочечной ДНК из *E. coli*. Для достижения цели необходимо установить оптимальное взаимное расположение доменов, определить влияние транкирования фермента на его структуру и свойства, а также установить оптимальную длину и аминокислотный состав пептидного линкера между двумя белками исходя из стабильности химерной молекулы по результатам молекулярной динамики. Гипотеза исследования заключается в том, что дополнительный ДНК-связывающий домен, присоединенный к TdT, обеспечит повышение аффинности фермента к одноцепочечной ДНК и положительно скажется на стабильности и активности фермента, а также создаст новые пути управления экзотрансферазной активностью *in vitro*, что имеет особое значения для создания энзиматического программируемого метода *de novo* синтеза ДНК в водных средах.

Материалы и методы исследования. Модели химерных ферментов построены методом гомологичного моделирования (комбинацией онлайн сервисов RaptorX, Robetta и программы Modeller 10.0) [12; 13] с использованием пространственных структур TdT мыши и EcSSB, представленных в базе данных Protein Data Bank (идентификаторы в базе данных: 4I27, 2COE, 1QVC) в качестве шаблонов. Аминокислотные последовательности TdT быка и EcSSB получены из базы данных UniProt (идентификаторы в базе данных: P06526, P0AGE0 соответственно), а использованные линкеры выбраны из литературных источников, где они применялись для создания химерных полимераз с участием белков, связывающихся с ДНК [14; 15]. По аналогичной методике построены транкированные модели химерного фермента с удалением первых 161 N-концевых аминокислотных остатков.

Валидацию полученных моделей проводили с помощью программы ChimeraX v 1.2 [16] (визуальная проверка моделей на правильное формирование функциональных доменов и фолдинга белка), а также при помощи онлайн сервиса SWISS-Model Structure Assessment (по карте распределения двугранных углов и показателю QMEAN, описывающему основные геометрические аспекты белковой структуры) [17]. Дальнейшую валидацию моделей проводили с использованием метода молекулярной динамики (МД) в программе AMBER16 в силовом поле Amber (набор параметров ff14). Модели ферментов подвергали процедуре автоматической подготовки для проведения МД: удаление атомов водородов и молекул воды, добавление ионов Na⁺ и Cl⁻, «растворение» полученной модели в воде.

Перед проведением МД систему подвергали процедуре оптимизации: минимизация полной энергии, включающая в себя 20000 шагов с использованием метода сопряженных градиентов без ограничений на движение атомов. Нагрев осуществляли в течение 100 пс до температуры 350 К (NVT ансамбль). Моделирование свободной динамики проводили в течение 10 нс (NPT ансамбль) при температуре в 300 К и постоянном давлении в 1 атм. Постоянную температуру поддерживали с использованием термостата Ланжевена (частота столкновений – 2 пс⁻¹). Контроль давления в ячейке осуществляли с помощью баростата Берендсена с характерным временем 1,0 пс. Расчет осуществляли в явном растворителе (вода, модель TIP3P, размеры области моделирования – 5,0 Å от поверхности белка).

Компьютерное моделирование осуществляли на вычислительном комплексе ИБОХ НАН Беларуси (2 х Opteron 6378 2,4 GHz (32 ядра); 256 GB RAM; 2 х NVIDIA GeForce GTX TITAN).

Результаты МД анализировали с использованием функционала библиотек Python3: NumPy (численные расчеты), Pytraj (анализ траекторий МД), Matplotlib (графическое отображение).

Результаты и их обсуждение. Результаты исследования пространственной структуры TdT с присоединенным по N-концевой последовательности ферментом EcSSB показали, что ДНК-аффинный домен EcSSB не контактирует с ДНК, проходящей через ДНК-аффинный домен фермента и, соответственно, практически не будет изменять аффинность белка к субстрату (рис. 1). Такое расположение EcSSB скорее всего связано с его большим объемом и стерическим влиянием N-концевой последовательности фермента. При исследовании транкированной модели взаимное расположение слитых белков осталось практически без изменений, что позволяет предположить, что объемность белка не дает расположиться ему на месте удаленного N-концевого фрагмента. Вместе с тем нужно отметить, что при таком слиянии возможно увеличение эффективности фермента за счет повышения константы ассоциации ДНК-белка, но в то же время сила взаимодействия EcSSB может оказаться слишком высокой, что в свою очередь приведет к отдалению ДНК от активного центра фермента TdT и снижению его продуктивности при низких концентрациях субстрата.

В случае присоединения EcSSB по C-концевой последовательности фермента, ДНК-аффинные домены окажутся на одной линии (рис. 2), вследствие чего модифицированная ДНК будет плавно переходить с одного ДНК-аффинного домена на другой, что, вероятно, изменит аффинность к одноцепочечной ДНК и положительно скажется на активности фермента. При таком расположении генов ДНК-аффинный домен EcSSB будет действовать как конвейер и способствовать удалению из активного центра TdT модифицированной ДНК и, тем самым, создавать градиент концентрации, который будет содействовать подходу нового субстрата. Также в пользу слияния

Рис. 1. Модели химерного белка с присоединением EcSSB (серый) по N-концевой последовательности нативного фермента (I, синий), фермента с транкированным N-концевым фрагментом (II), красным цветом выделена ДНК и ДНК-аффинный домен EcSSB

Fig. 1. Models of a fusion protein with EcSSB (gray) attachment at the N-terminus of the native enzyme (I, blue), an enzyme with a truncated N-terminus (II), DNA and DNA-affinity domain of EcSSB are highlighted in red

Рис. 2. Модели химерного белка с присоединением EcSSB (серый) по С-концевой последовательности нативного фермента TdT (I, синий) и фермента с транкированным N-концевым фрагментом (II). Красным цветом выделена ДНК и ДНК-аффинный домен EcSSB

Fig. 2. Models of a fusion protein with EcSSB (gray) attachment at the C-terminus of the native TdT enzyme (I, blue), and an enzyme with a truncated N-terminus (II). DNA and DNA affinity domain of EcSSB are highlighted in red

по С-концевой последовательности TdT играет существенное снижение активности EcSSB при мутации С-концевого фрагмента или его удалении, а также участие N-концевого фермента во взаимодействии с ДHK, которое положительно влияет на активность фермента в присутствии ионов некоторых металлов в растворе [8]. При исследовании транкированного и нативного химерного фермента методом МД взаимное расположение ДHK-аффинных доменов практически не изменилось, что говорит об энергетической и стерической выгодности данной пространственной структуры белка.

По результатам МД видно, что транкирование химерного фермента повышает стабильность белка, выход на плато среднеквадратического отклонения (СКО) происходит быстрее, меньше флуктуация радиуса гирации, при этом структура белка имеет больший размер, что может быть связано с увеличением подвижности цепей фермента (рис. 3). Об этом также свидетельствует

Рис. 3. Результаты расчета среднеквадратического отклонения, относительно начального положения (I), расстояния между ДНК-аффинными доменами (II), среднеквадратичной флуктуации атомов (III) и радиуса гирации (IV), для химерного фермента с присоединенным EcSSB к нативной (оранжевый) и транкированой форме (синий) TdT быка

Fig. 3. Results of calculation of root-mean-square deviation, towards first frame (I), distance between the DNA affinity domains (II), root-mean-square fluctuation of atoms (III), and radius of gyration (IV), for the fusion enzyme of EcSSB attachment to the native (orange) and truncated form (blue) bovine TdT

Результаты молекулярной динамики моделей с линкерами для белка слияния генов нативного и транкированого фермента TdT быка и EcSSB uma havina TdT and FoSCB Results of molecular dynamics of models with linkers for fusion protein of native and truncated en

Время, необ для выхода
ed for on to ru ateau,
Ĺ
7
-
1
3
1
1
1,

П р и м е ч а н и е. * – не выход на плато. N о t е. * – not reaching a plateau.

характер изменения расстояния между аффинными центрами, среднеквадратичная флуктуация атомов (СКФ) и количество образованных и разрушенных водородных связей. Также необходимо отметить уменьшение расстояния между ДНК-аффинными доменами и увеличение их взаимной подвижности, которое может положительно сказаться на увеличении активности фермента.

По результатам МД нами установлено, что наилучшими показателями стабильности (незначительные колебания СКО, радиуса гирации и изменения количества образованных и разрушенных водородных связей), а также наименьшим радиусом гирации (5,3 Å) вкупе с высокой взаимной подвижностью ДНК-аффинных доменов белков имеют линкеры GGGGSGGGSGGGGGG и GGGSGGGS (таблица). Среди моделей со сниженной подвижностью ДНК-аффинных доменов подобными характеристиками обладает линкер TCT, использование которого привело к сближению аффинных доменов, несмотря на его большую длину (в меньшей степени это выражено у линкера 9хGGGS). Вероятно, это связано с образованием вторичной структуры линкера. Обратная ситуация наблюдается у линкера 5хGGGGS: при сопоставимой взаимной подвижности ДНКаффинных доменов, расстояние между ними наибольшее среди всех исследуемых моделей. Примечательно, что введение линкера, состоящего из 8 аминокислот или больше (кроме 3хGGGGS), между белками приводит к существенному повышению стабильности фермента TdT, а также к увеличению взаимной подвижности ДНК-аффинных доменов и увеличению количества водородных связей, что также положительно сказывается на устойчивости фермента.

Среди моделей, содержащих транкированные белки, наилучшими показателями стабильности и высокой взаимной подвижностью ДНК-аффинных доменов белков обладают линкеры GGSGGGSGG, GGGGGGG и, с меньшей подвижностью, линкер 5хGGGGS. Среди ферментов со сниженной взаимной подвижностью ДНК-аффинных доменов подобными характеристиками обладает линкер GTGSTG, что должно способствовать более непрерывному взаимодействию с ДНК. В отличие от нативного белка введение линкеров у транкированного фермента способствует более существенному изменению среднего расстояния между аффинными доменами, но не столь большому взаимному колебанию ДНК-аффинных доменов, при этом использование линкера ТСТ не приводит к их сближению, но существенно ограничивает подвижность. Следует отметить тот факт, что все исследованные модели транкированной формы демонстрируют стабильность на протяжении всего in silico анализа, в отличие от моделей нативной формы, которым не всегда удавалось выйти на плато (по результатам расчета СКО) за время исследования либо они разрушались в процессе оптимизации (например, при использовании в качестве линкера GTGSGT). Интересно также, что у разных линкеров транкированного фермента средний радиус гирации практически не изменялся, при этом в большинстве случаев наблюдалось значительное изменение взаимного расстояния между ДНК-аффинными доменами.

Заключение. Проведен анализ структур химерных белков TdT быка и EcSSB с различными линкерами. В результате анализа пространственных структур полученных моделей определено, что оптимальным местом для присоединения EcSSB является С-концевая последовательность фермента TdT быка как для нативной, так и для транкированной форм, так как в таком случае будет происходить эффективный переход субстрата с одного ДHK-аффинного домена белка на другой.

Полученные результаты будут использованы для дизайна и гетерологической экспрессии химерного белка путем объединения генов TdT быка и EcSSB. Благодарности. Работа выполнена при поддержке гранта Белорусского республиканского фонда фундаментальных исследований Х21М-056 и задания 20210422 Государственной программы научных исследований «Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия» на 2021–2025 годы. Acknowledgments. The work is carried out with the support of the grant of the Belarusian Republican Foundation for Fundamental Research X21M-056 and the task 20210422 of the State Program of Scientific Research "Chemical processes, reagents and technologies, bioregulators and bioorgchemistry" for 2021–2025.

Список использованных источников

1. Fowler, J. D. Biochemical, Structural, and Physiological Characterization of Terminal Deoxynucleotidyl Transferase / J. D. Fowler, Z. Suo // Chem. Rev. – 2006. – Vol. 106, N 6. – P. 2092–2110. https://doi.org/10.1021/cr040445w

2. Motea, E. A. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase / E. A. Motea, A. J. Berdis // Biochim. Biophys. Acta Prot. Proteom. - 2010. - Vol. 1804, N 5. - P. 1151-1166. https://doi.org/10.1016/j. bbapap.2009.06.030

3. High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation / L. Tang [et al.] // Angew. Chem. Int. Ed. – 2017. – Vol. 56, N 24. – P. 6778–6782. https://doi.org/10.1002/anie.201700991

4. Gavrieli, Y. Identification of programmed cell death *in situ* via specific labeling of nuclear DNA fragmentation / Y. Gavrieli, Y. Sherman, S. A. Ben-Sasson // J. Cell Biol. – 1992. – Vol. 119, N 3. – P. 493–501. https://doi.org/10.1083/ jcb.119.3.493

5. Terminal Deoxynucleotidyl Transferase and Rolling Circle Amplification Induced G-triplex Formation: A Label-free Fluorescent Strategy for DNA Methyltransferase Activity Assay / H. Que [et al.] // Sens. Act. B: Chem. – 2019. – Vol. 291. – P. 394–400. https://doi.org/10.1016/j.snb.2019.04.091

6. Enzymatic fabrication of DNA nanostructures: Extension of a self-assembled oligonucleotide monolayer on gold arrays / D. C. Chow [et al.] // J. Am. Chem. Soc. – 2005. – Vol. 127, N 41. – P. 14122–14123. https://doi.org/10.1021/ja052491z

7. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT) in *E. coli* / W. J. Kuan [et al.] // Biochem. Ins. – 2010. – Vol. 3. – P. 41–46. https://doi.org/10.4137/bci.s5123

8. Expression and Processing of Recombinant Human Terminal Transferase in Baculovirus System / L. M. Chang [et al.] // J. Biol. Chem. – 1998. – Vol. 263, N 25. – P. 12509–12513. https://doi.org/10.1016/s0021-9258(18)37784-6

9. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance *in vitro* / Y. Wang [et al.] // Nuc. Acids Res. – 2004. – Vol. 32, N 3. – P. 1197–1207. https://doi.org/10.1093/nar/gkh271

10. Flynn, R. L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians / R. L. Flynn, L. Zou // Crit. Rev. Biochem. Mol. Biol. – 2010. – Vol. 45, N 4. – P. 266–275. https://doi.org/10.3109/10409238.2010.488216

11. Weiner, J. H. The deoxyribonucleic acid unwinding protein of *Escherichia coli*. Properties and functions in replication / J. H. Weiner, L. L. Bertsch, A. Kornberg // J. Biol. Chem. – 1975. – Vol. 250, N 6. – P. 1972–1980. https://doi.org/10.1016/ s0021-9258(19)41671-2

12. Kim, D. E. Protein structure prediction and analysis using the Robetta server / D. E. Kim, D. Chivian, D. Baker // Nuc. Acids Res. - 2004. - Vol. 32. - P. 526-531. https://doi.org/10.1093/nar/gkh468

13. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model / S. Wang [et al.] // PLoS Comp. Biol. – 2017. – Vol. 13, N 1. – P. 1–34. https://doi.org/10.1371/journal.pcbi.1005324

14. Sun, S. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity / S. Sun, L. Geng, Y. Shamoo // Prot. Struct. Func. Bioinf. – 2006. – Vol. 65, N 1. – P. 231–238. https://doi.org/10.1002/prot.21088

15. Chisty, L. T. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA / L. T. Chisty, D. Quaglia, M. R. Webb // PLOSE ONE. – 2018. – Vol. 13, N 2. – P. 1–20. https://doi. org/10.1371/journal.pone.0193272

16. UCSF ChimeraX: Structure visualization for researchers, educators, and developers / E. F. Pettersen [et al.] // Protein Sci. - 2021. - Vol. 30, N 1. - P. 70-82. https://doi.org/10.1002/pro.3943

17. Benkert, P. Toward the estimation of the absolute quality of individual protein structure models / P. Benkert, M. Biasini, T. Schwede // Bioinf. – 2011. – Vol. 27, N 3. – P. 343–350. https://doi.org/10.1093/bioinformatics/btq662

References

1. Fowler J. D., Suo Z. Biochemical, Structural, and Physiological Characterization of Terminal Deoxynucleotidyl Transferase. *Chemical Reviews*, 2006, vol. 106, no. 6, pp. 2092–2110. https://doi.org/10.1021/cr040445w

2. Motea E. A., Berdis A. J. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase. *Biochimica et Biophysica Acta – Proteins and Proteomics*, 2010, vol. 1804, no. 5, pp. 1151–1166. https://doi.org/10.1016/j. bbapap.2009.06.030

3. Tang L., Navarro L. A., Chilkoti A., Zauscher S. High-Molecular-Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation. *Angewandte Chemie International Edition*, 2017, vol. 56, no. 24, pp. 6778–6782. https://doi.org/10.1002/anie.201700991

4. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death *in situ* via specific labeling of nuclear DNA fragmentation. *Journal of Cell Biology*, 1992, vol. 119, no. 3, pp. 493–501. https://doi.org/10.1083/jcb.119.3.493

5. Que H., Yan X., Guo B., Ma H., Wang T., Liu P., Gan X., Yan Y. Terminal Deoxynucleotidyl Transferase and Rolling Circle Amplification Induced G-triplex Formation: A Label-free Fluorescent Strategy for DNA Methyltransferase Activity Assay. *Sensors and Actuators B: Chemical*, 2019, vol. 291, pp. 394–400. https://doi.org/10.1016/j.snb.2019.04.091

6. Chow D. C., Lee W. K., Zauscher S., Chilkoti A. Enzymatic fabrication of DNA nanostructures: Extension of a self-assembled oligonucleotide monolayer on gold arrays. *Journal of the American Chemical Society*, 2005, vol. 127, no. 41, pp. 14122–14123. https://doi.org/10.1021/ja052491z

7. Kuan W. J., Joy J., Mee N. F., Perlyn K. Z., Wen T. S., Nguen T., James J., Chai E., Flotow H., Crasta S., Chua K., Peng N. S., Hill J. Generation of Active Bovine Terminal Deoxynucleotidyl Transferase (TdT) in *E. coli. Biochemistry Insights*, 2010, vol. 3, pp. 41–46. https://doi.org/10.4137/bci.s5123

8. Chang L. M., Rafter E., Rusquet-Valerius R., Peterson R. C., White S. T., Bollum F. J. Expression and Processing of Recombinant Human Terminal Transferase in Baculovirus System. *Journal of Biological Chemistry*, 1998, vol. 263, no. 25, pp. 12509–12513. https://doi.org/10.1016/s0021-9258(18)37784-6

9. Wang Y., Prosen D. E., Mei L., Sullivan J. C., Finney M., Vander Horn P. B. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance *in vitro*. *Nucleic Acids Research*, 2004, vol. 32, no. 3, pp. 1197–1207. https://doi.org/10.1093/nar/gkh271

10. Flynn R. L., Zou L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. *Critical Reviews in Biochemistry and Molecular Biology*, 2010, vol. 45, no. 4, pp. 266–275. https://doi.org/10.3109/10409238.2 010.488216

11. Weiner J. H., Bertsch L. L., Kornberg A. The deoxyribonucleic acid unwinding protein of *Escherichia coli*. Properties and functions in replication. *Journal of Biological Chemistry*, 1975, vol. 250, no. 6, pp. 1972–1980. https://doi.org/10.1016/s0021-9258(19)41671-2

12. Kim D. E., Chivian D., Baker D. Protein structure prediction and analysis using the Robetta server. *Nucleic Acids Research*, 2004, vol. 32, pp. 526–531. https://doi.org/10.1093/nar/gkh468

13. Wang S., Sun S., Li Z., Zhang R., Xu J. Accurate *De Novo* Prediction of Protein Contact Map by Ultra-Deep Learning Model. *PLoS Computational Biology*, 2017, vol. 13, no. 1, pp. 1–34. https://doi.org/10.1371/journal.pcbi.1005324

14. Sun S., Geng L., Shamoo Y. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity. *Proteins: Structure, Function, and Bioinformatics*, 2006, vol. 65, no. 1, pp. 231–238. https://doi.org/10.1002/prot.21088

15. Chisty L. T., Quaglia D., Webb M. R. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA. *PLOSE ONE*, 2018, vol. 13, no. 2, pp. 1–20. https://doi.org/10.1371/journal.pone.0193272

16. Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., Morris J. H., Ferrin T. E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Sciences*, 2021, vol. 30, no. 1, pp. 70–82. https://doi.org/10.1002/pro.3943

17. Benkert P., Biasini M., Schwede M. Toward the estimation of the absolute quality of individual protein structure models. *Bioinformatics*, 2011, vol. 27, no. 3, pp. 343–350. https://doi.org/10.1093/bioinformatics/btq662

Информация об авторах

Саченко Антон Борисович – мл. науч. сотрудник, аспирант. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: antosuk@yandex.ru.

Диченко Ярослав Владимирович – канд. хим. наук, ст. науч. сотрудник. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: dichenko@iboch.by.

Янцевич Алексей Викторович – канд. хим. наук, заведующий лабораторией. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: al.yantsevich@gmail.com.

Усанов Сергей Александрович – член-корреспондент, д-р хим. наук, профессор. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: usanov@iboch.by.

Information about the authors

Sachanka Antos B. – Junior researcher, Postgraduate student. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: antosuk@yandex.ru.

Dzichenka Yaraslau U. – Ph. D. (Chemistry), Senior researcher. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: dichenko@iboch.by.

Yantsevich Aliaksei V. – Ph. D. (Chemistry), Head of the Laboratory. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: al.yantsevich@gmail.com.

Usanov Sergei A. – Corresponding Member, D. Sc. (Chemistry), Professor. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: usanov@ iboch.by.