742 Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 6, pp. 742—748

ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)

TEXHUYECKHE HAYKH
TECHNICAL SCIENCES
UDC 622.788:662.8.055(045) Received 12.08.2021
https://doi.org/10.29235/1561-8323-2021-65-6-742-748 [Moctynuio B penakuuto 12.08.2021

Academician Sergei A. Chizhik!, Olga M. Volchek?,
Corresponding Member Viktor Y. Prushak?

!Presidium of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
’Baranovichi State University, Baranovichi, Republic of Belarus
3Soligorsk Institute of Resources Saving Problems with Pilot Production, Soligorsk, Republic of Belarus

SIMULATION OF RADIAL OSCILLATIONS OF A SPRING-LOADED ROLL
IN A ROLL COMPACTOR

Abstract. Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when interacting the powder
being compacted with the rolls. Considering the separation of the feed and compaction areas in the contact area of the roll
with the material being compacted, we obtain the dependence of the force acting on the roll on the gap size between the rolls.
It is shown that this dependence is non-linear, and it can be described with a sufficiently high accuracy degree by an
exponential function with a negative exponent in the working range. The given numerical solution of the equation of free
nonlinear oscillations of the spring-loaded roll has shown that considering the deformation of the material being compacted
leads to a reduction of the natural frequency of the system by 20-25 % compared to the case, where the pressure force of the
powder on the roll is assumed to be independent of the gap size. The nonlinearity of the dependence of the pressure force on
the gap also leads to the increase by 10 % in the calculated values of the maximum displacements. The developed approach to
the calculation of oscillations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities
of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows estimating the
frequencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the occurrence
of resonance in the machine is not possible.
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MOJIEJTMPOBAHUE PATUAJBHBIX KOJEBAHUM NOJANPYKAHEHHOT O
BAJIKA BAJIBL-IIPECCA

AHHoOTanms. BeimonHeHO MopenpoBaHue KoJIeOaHUH MOANPYKUHEHHOTO BaJIKa BaJbl-IIpecca MPH B3aUMOACHCTBUU
MIPEeCCyeMOoro nopoimka ¢ Bagkamu. C y4eToM BBIAEICHHUS B 00IaCTH KOHTAKTa BaJIKa C PECCYyeMBIM MaTepPHaJIoM 30H MOja-
YH 1 TPECCOBAHUS, TTOJTyYeHa 3aBUCHMOCTb CHIIBI, IEHCTBYIOMIEH Ha BaJIOK, OT BEIMYMHBI 3a30pa Mexay Bankamu. [TokazaHo,
YTO 3Ta 3aBUCHMOCTh NMEET HETHHEITHBII XapakTep, MprueM B pabodeM Anana3oHe ¢ JOCTATOYHO BBHICOKOH CTEMEHBIO TOU-
HOCTH MOXET OBITh OMHCaHa CTETNEHHOH (QyHKIHEH ¢ OTpUIIaTeTbHBIM MOKa3aTeNneM cTeneHu. [IpuBeneHo uncnennoe pee-
HUE ypaBHEHHS CBOOOIHBIX HETMHEHHBIX KONeOaHN MOANPYKMHEHHOTO BaJKa, KOTOPOE MPOAEMOHCTPHPOBAIIO, UTO yUET
nedopMupOBaHUS CKHMAEMOTO MaTeprata MPUBOIUT K CHIDKCHHUIO YaCTOT COOCTBEHHBIX KonebaHuii cuctems! Ha 20-25 %
110 CPAaBHEHUIO CO CTy4YaeM, IPH KOTOPOM CHJIA AABJIECHUS TTOPOIIKA HAa BAJIOK IPHHIMAETCS HE 3aBUCSIIEH OT BETHYNHBI 3a-
3opa. HennHeHHOCTH 3aBUCMMOCTH CHIIBI JABICHHS OT 3a30pa MPUBOANT TakKe K yBenudeHnio Ha 10 % pacueTHBIX 3Haue-
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HUIl MAaKCUMaJIbHBIX CMEIeHHH. Pa3paboTaHHBIN OAX0/ K pacueTy KoieOaHuH MopecCOPEeHHOro Ballka Bajbl-IIpecca I10-
3BOJISIET yUECTh 0COOEHHOCTH Je()OpPMHUPOBAHUS IIPECCYEMOT0 MOPOIIKA IIPU €ro B3aMMOJCHCTBHH C BaJIKaAMH, a TAKKeE I10-
3BOJISIET, HAPSIJLy C OLEHKOM 9aCTOT ¥ aMIUINTY]] KoJeOaHHH, yCTAHOBHTH ONITHMAJIbHBIH 1Nana30H 3HaueHUH KodhureHTa
JKECTKOCTH NPYKUHBI, IPU KOTOPOM IOSIBIICHHE PEe30HAHCa B MalInHe Oy/IeT HEBO3MOKHO.
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Introduction. The functioning of a roll compactor is determined both by the characteristics of the
machine itself and by the parameters of the material being compacted. In an ideal case, the compacting
process would be stationary and the rolls would be constantly in a true equilibrium if all powder particles
being compacted have the same size, constant material density and as well as constant pressure value
which ensures uniform powder feeding, etc. Variations in the above parameters, however, lead to
oscillations of the rolls in a radial direction. To ensure a continuous compacting process and to reduce
the forces acting on the rolls, which are caused by load variations, one of the rolls is spring-loaded. In
the case of resonance, roll’s oscillation can lead to inhomogeneity of the flakes, which in turn can have
a negative effect on the quality of the final product.

To exclude resonance from the operating mode it is necessary to know oscillation parameters of the
spring-loaded roll, which depend both on the mass of oscillating parts and spring rate, and on the amount
and characteristics of the material being compacted and located between the rolls.

The information available in the literature on powder compacting machines for the production
of granulated fertilizers, including potassium chloride (KCl), is mostly of descriptive or promotional
nature [1-3]. The theoretical basis to determine the specifications of the used equipment has remained
practically unchanged since the 1980s at the territory of the CIS countries [4—6].

Over recent years, there appeared a number of papers dealing with the determination of forces acting
on rolls during powder compacting [7-9]. Both analytical and numerical methods are used for this
purpose. In the paper [10] powder deformation model has been developed. This model enables to
determine the forces acting on the rolls. However, the processes associated with oscillations of spring-
loaded rolls have not been considered in these papers.

In the paper [11], an attempt is made to estimate the natural frequencies of a spring-loaded roll
crusher. However, in this work it is assumed that the change of forces acting on the roll occurs according
to the linear law, which does not correspond to the actual distribution of such forces. The purpose of this
work is to develop an algorithm for calculating the oscillations of a spring-loaded roll of a roll compactor,
taking into account the peculiarities of interaction between the powder being compacted and the rolls.

Results and their discussion. Figure 1 shows a computational scheme designed to describe the
oscillations of a spring-loaded roll.

During rolls rotation that drives the powder being pressed, they are subjected to distributed forces
from the material being compacted. The projections of these forces are indicated in the figure by /' and
F . The elastic force F prevents horizontal movement. The dynamic equation of motion of the spring-
loaded roll can be written as follows

mi=F, - Fy. (1)

When the rolls move by a distance x from the position at
which there is no spring deformation, elastic forces arise,
and they are proportional to the spring deformation

F, = cx,

where c is the spring rate.

Calculation of force F_acting on the roll 2 (see Fig. 1)
will be performed according to the procedure described in
the paper [10]. To describe powder compression, we introduce

Fig. 1. Computational scheme of spring-loaded
roll oscillations: / — a roll with a fixed axis;
2 —aroll with a movable axis; 3 — material being
the angle 6 changing from zero (horizontal line connecting compacted
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the rolls centres) to o as an argument (beginning the contact area between the powder and the roll). The
contact area is divided into a feed area and a sealing area [12]. The feed area corresponds to the variation
range of the angle 0 from y to a.. The angle 6 is determined by the formula

1 . (sin(pj
o =—| @+arcsin| — ,
2 sin o

where ¢ =arctg(f), fis the coefficient of friction between the powder mixture and the surface of the
roll; d is an angle of internal friction of the powder material (rad).

In the feed area, the dependence of the mean axial stress ¢ (also called hydrostatic pressure) on the
angle O is given by the differential equation

@z 2Rcos0 s (1+s:1n6)(tg6—f) _1g0 |, )
d®  hy+2R(1—cosB) | (1—-sind)(1+ ftg0)
where R is the radius of the roll; /_is distance between roll surfaces (gap).
The boundary condition for the beginning of the powder-roll contact region is
o) =—— 3)

1-sind’
where p, is the feed pressure.
Solving the equation (2) taking into account (3), we obtain

0(9) = 1 —l:(i)n 5 exp(_g qupply (g)dgj

The function introduced here is defined by the formula

2Rcosc¢ (1+sind)(tgg— 1) _t
hy +2R(1—cosc)| (1—sind)(1+ ftgc) °r

Having the dependence o(0), the standard pressure p on the roll and shear stress 7, can be calculated

qupply (Q) =

_ (e}
1+ ftgd’

The angle y corresponding to the transition to the sealing area is obtained by solving a non-linear
equation

p Tr=Jp.

j it (1—2cosy+h—sj— (+sind)tgy = f) —tgvyl2,

~ (1-sind)(1+ ftgy)

where K is compaction index [12].
In the sealing area, for the average axial stress instead of the formula (2), one should use the equation

2R
49 _ sk 1g0[ 1- cos® | @)
do hs +2R(1—cos0)
The continuity equation is used as the boundary condition
cS(’Y)|supply - cy(’Y)|pressing : (5)

Solving the equation (4) with regard for (5) gives

~ Do _a _Y .
c(0)= —1 —eind eXp[ ;[ qupply (Q)dQJ exp( _lQpressmg (G)dg] 5

where

2Rcos¢ J

Qpressmg (Q) g Q[ he + 2R(1 —COoS Q)
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The standard pressure on the roll and the shear stress can be expressed as the function o(0) and for
the sealing area the corresponding formulas are as follows

p =0o(l+sind) -1 rtgo;

otgo 2sind hs +2R(1—cos0)
Tr= 5 - - +K|1- .
(1+tg”0)(1+sind)| 1-sind 2RcosB

The projection of the equivalent force /' acting on the roll of length /, in turn, is determined by
integrating the combination of normal and shear forces distributed over the contact surface of the powder
with the roll

o
F, =RHI(pcosG+tfsin9)d9.
0

Figure 2 shows the force dependence on gap size between the rolls, obtained for the case R = 0.5 m,
H=01m, f=0.3, K = 3. This dependence is approximated with a high degree of accuracy by the
following expression

F =253k 184, 6)

Since the dependence F (k) is non-linear, the eq. (1) is the non-linear differential equation of the
second order. Its solution enables to find the parameters of free and forced oscillations of the rolls arising
during operation.

Assume that the roll is made of steel and that its mass is m = 900 kg. If the nominal roll gap makes
h, = 6 mm, then it follows from fig. 2 that the corresponding value of the pressing force is = 2732 kN.
If we set that the undeformed state of the support spring corresponds to roll gap 4, = 4 mm, we obtain
the following spring rate of the support spring

F, _ 2732.10°
hy—hyy 0,006 —0,004

Consequently, taking the position corresponding to the undeformed state of the support spring and
substituting the expressions of the applied forces in the eq. (1), we obtain

0005 =— 23 _1366-10°x. (7)

(x +0,004)"814

Figure 3 shows graphs of free roll oscillations obtained by the Runge—Kutta’s Fourth Order Method
for the case when at the initial moment of time the roll gap /# was 5 mm and the initial speed of coordinate
variation x was absent. The solid line corresponds to the differential eq. (7), and the dashed line to the

2x10”
\
\

‘ 2x10” \

=1366-10° H/m.

C =

JH

A\

2x10” \
S

2x10” ~~=

Force F,

\-‘.

0,

4x10°  6x10°  8x10° 0,01 0,012 0,014 0016
Gap between the rolls /,, M

Fig. 2. Dependence of the force F_on the gap /_between the rolls at the feed pressure p, = 106 Pa: the solid line is the exact
dependence; the dashed line is an approximation by the eq. (6)
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Fig. 3. Graphs of free roll oscillations considering the deformation features of the material being pressed (solid line)
and without such consideration (dashed line)

version in which the force from the side of the material being compacted was assumed constant (this
version corresponds to the well-studied linear oscillations of a material system with single degree
of freedom).

From the graphs provided, one can see that taking into account the deformation of the material being
compacted results in a 2025 % decrease in the natural frequencies of the system. Due to the nonlinear
dependence of the force F on the displacement, the maximum displacement from the equilibrium
position is approximately 10 % higher compared to the case of linear oscillations.

The considered case of roll oscillations corresponds to nonlinear oscillations of the considered
system. In the case of small deviations Ax from the equilibrium position, dependence (6) can be
linearized [13]. In this case, the expression for the pressure force on the roll of the material being
compacted in the neighborhood of the point with the coordinate x is written in the following form

F.=F  —kAx, 8)

where F is the value of the pressing force corresponding to the coordinate x; & is the stiffness coefficient
determining the deformation of the material being compacted in the area under consideration.

The value of the rate & can be obtained by differentiation of the dependence, shown in Fig. 2, with
respect to parameter /4 :

e OF,
oh,
2x10°
=
T 1,5%10° \
e
5
8
£ 1x10°
o
Q
2
& 5x10°

4x10°  6x10°  8x10° 0,01 0,012 0,014 0016
Gap between the rolls 4, m

Fig. 4. Dependence of the stiffness coefficient of the material being compacted on the gap between the rolls at the feed
pressure p, = 106 Pa
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Figure 4 shows graph of the stiffness coefficient of the material being compacted depending on the
gap between the rolls.

Substitution of the expression (8) into the eq. (1) leads to obtaining the small oscillations’ equation
of a spring-loaded roll mX = F, — kx — cx, the known solution of which [13] enables to estimate the fre-
quencies of small natural oscillations corresponding to specific gap between the rolls using the formula

c+k

m

Thus, the developed approach to the calculation of oscillations of the spring-loaded roll in the roll
compactor enables to take into account the peculiarities of deformation of the powder being compacted
during its interaction with the rolls. In addition, the considered approach allows estimating the fre-
quencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the
occurrence of resonance in the machine is not possible.

Conclusion. Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when
interacting the powder being compacted with the rolls. Considering the separation of the feed and com-
paction areas in the contact area of the roll with the material being compacted, we obtain the dependence
of the force acting on the roll on the gap size between the rolls. It is shown that this dependence is non-
linear, and it can be described with a sufficiently high accuracy degree by an exponential function with
a negative exponent in the working range. The given numerical solution of the equation of free nonlinear
oscillations of the spring-loaded roll has shown that considering the deformation of the material being
compacted leads to a reduction of the natural frequency of the system by 20-25 % compared to the case,
where the pressure force of the powder on the roll is assumed to be independent of the gap size. The
nonlinearity of the dependence of the pressure force on the gap also leads to an increase by 10 % in the
calculated values of the maximum displacements. The developed approach to the calculation of oscil-
lations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities
of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows
estimating the frequencies and oscillation amplitudes and setting the optimum range of spring rate
values, at which the occurrence of resonance in the machine is not possible.
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