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METHOD OF REFLECTIONS FOR THE KLEIN-GORDON EQUATION

Abstract. Using the method of reflections, the solutions of the first and second mixed problem for the homogenous
Klein—Gordon equation in a quarter plane and of the first mixed problem for the homogenous Klein—Gordon equation in a half-
strip are written out in an explicit analytical form. The Cauchy conditions of these problems are inhomogeneous, but the Dir-
ichlet boundary condition (or the Neumann boundary condition) is homogeneous. Conditions are formulated, under which the
solutions to these problems are classical.
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METOJI OTPAKEHHWM 1J151 YPABHEHU S KJIEMWHA-TOPJIOHA

AHHOTanus. MeToI0M OTpaXeHU B SBHOM aHAJUTHYECKOM BHJIE BBIMHUCAHBI PEILICHHS IEPBOH U BTOPOH CMEIIaHHBIX
3a/a4 J1s OJHOPOJHOro ypaBHeHus KieliHa—l opoHa B 4eTBEpTH IJIOCKOCTH U NEPBOIl CMELIaHHOM 3a1aun 1 OJHOPOA-
Horo ypaBHeHus Kneilina—I'opaoHa B momymnosnoce ¢ HEOAHOPOAHBIME ycinoBusMU Komin 1 oqHOpoAHBIM ycinoBueM Jupuxie
(unn ycnosuem Heiimana). ChopMynupoBaHbl YCIOBHS, IPU KOTOPBIX PEIICHUS JAHHBIX 3a/1a4 SBISIOTCS KJIACCHYECKUMH.

Kuarouesnle cioBa: ypasaenue KieitHa—I opnona, MeTos oTpaxeHuH, cMeIIaHHas 3aj1a4a, KI1acCHUECKOe pelleHHe

Jas murupoBanus. Kopsiok, B. 1. Merox otpaxenuii uist ypaBaenus: Kneitna—Ioprona / B. U. Kopsiok, 5. B. Pyabko /
Joxi. Ham. akazn. nayk bemapycu. —2022. — T. 66, Ne 3. — C. 263-268. https://doi.org/10.29235/1561-8323-2022-66-3-263-268

Introduction. The Klein—Gordon equation describes the dynamics of quantum particles with zero
spin and non-zero mass (e. g., Higgs boson, pion, and kaon) at speeds close to the speed of light [1].
Some other equations from mechanics and electrodynamics can be reduced to the Klein—Gordon
equation. Such equations include the telegraph equation, which describes the voltage and current on an
electrical transmission line with distance and time [2], and a wave equation with damping term, which
describes transverse waves of displacement on a string under consideration of the friction [3].

In previous papers, as a rule, solutions of mixed problems for the Klein—Gordon equation in a quarter-
plane were either not written out, or it was written out in an implicit analytic form [4; 5], or written out
for a particular case of the equation [6]. We also note that in the papers where the solution is written out,
the authors usually do only formal construction of the solution [6; 7], wherein the uniqueness and
smoothness of the solution are not studied.
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In this article, we will use the method of reflections [8; 9] to solve the boundary value problems asso-
ciated with the Klein—Gordon equation on the half-line 0 < x < oo and the finite interval 0 <x </.

The first mixed problem on the half-line. Let us start with the Dirichlet boundary condition first
and consider the initial boundary value problem

ﬁtzv—azaiv—cz\/:O, O0<t<oo, 0<x<o0,

v(0,x) = ¢(x), 0,v(0,x)=y(x), x>0, (M
W(£,0)=0, t>0

We assume that a > 0, ce{(x+iy)|(x=0and y > 0) or (x>0and y=0)}. We reduce the Dirichlet
problem (1) to the whole line by the reflection method. The idea is again to extend the initial data, in this
case ¢, y, to the whole line, so that the boundary condition is automatically satisfied for the solutions
of the Cauchy problem on the whole line with the extended initial data. Since the boundary condition is
in the Dirichlet form, one must take the odd extensions

o(x), x>0, y(x), x>0,
Podd (x) = 0, x=0, Woqa(x)= 0, x=0, )
—0(—x), x<0; —y(—x), x<O0.

Consider the Cauchy problem on the whole line with the extended initial data

©)

{@zu—azaiu—czuzo, 0<t<oo, 0<x<o0,

u(O,x) = ¢0dd (X), G,u(O,x) = Wodd ()C), — 0 < x <oo.

We know the solution to the problem (3) in an exact analytical form [10]

u(t,x):¢odd(x+at)+¢odd(X—at)+ 1 Hfmlo[g /aztz—(i—x)zj\vodd(é)déJr

2 261 x—at (4)

C_tx+at 1 E 5 2_ _ )
+2th\/m11(a\/af (E—x) )q)odd(‘i)dé-

It is obvious that u(z,0) =0. Then defining the restriction of u(x,?) to the positive half-line x >0,

V(%) = u(?,X) |20 ®)

we automatically have that v(0,7) =u(0,¢#) = 0. So the boundary condition of the Dirichlet problem (1) is
satisfied for v. The initial conditions are satisfied as well since the restrictions of ¢_,, and y_,, to the pos-
itive half-line are ¢ and y respectively. Finally, v solves the Klein—Gordon equation for x>0 since u
satisfies the Klein—Gordon equation for all x € R, and in particular for x >0. Thus, v defined by (5) is
a solution to the Dirichlet problem (1). The solution must be unique since the odd extension of the solu-
tion will solve the Cauchy problem (3), and therefore must be unique.

Using generalized d’Alembert’s formula (4) for the solution of (3), and taking the restriction (5), we
have that for x>0,

V(£ x) = Godd (x + at) + §odq (x — at) +Lx+ft[0(§ [22 —(i—X)szodd(é)d§+

2 2a ", ©)

Ctxﬂzt 1 c 35 3
+3x_fat\/mll(;\/a t _(F:_x) jd)odd((t:)d{;: t>0, x>0.
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Notice that if x>0 and ¢ >0, then x+at >0, and ¢oqq(x + at) = d(x + at). If in addition x —at >0,
then ¢oqq(x —at) = d(x —at), and over the interval s €[x —at, x+ at], Yoqq(s) =wy(s). Thus, for x > at,
we have

v(t,x):¢(x+at)+¢(x—at) 1 thl 10(2 }a2t2_(§_x)2jw(&)d§+

+ —_—
2 2a.°,
(7

ctx+at 1 c ) 5
+— I)| —+a“t" —(E—x) jd)(é’;)dé, t>0, x>0,x—at>0.
2xja“/a2z2—(§—x)2 l(a

For 0 < x < at, the argument x —at <0, and using (2) we can rewrite the solution (6) as

_d(x+at)-dlat—x) et 1 ¢ 22 . 2
v(t,x) = 5 3 £ mh(g\/at (E-x) j¢(§)d§+

x+at 0
v f Io(gmw@d&i ] 40[5M]w(—&)d&+
0 x—at
*%t ? o = Il(fm)q)(—a)dz;, £50, x>0, x—at <0.
x—at A"t a

~(E-x)?

Making the change of variables & > —&, we get

_d(x+a)-dlat—x) ot 1 ¢ 52 . 2
V(t,x)— 5 +2 £ \/mll(a a't (é X) jd)(é)dé-i'
0
J

+3tho(§da2t2—(é—x)zjw@)dmi [o(gx/aztz—(§+x)2)\if(§)d§+ ®)
0 at—x

2a
ct 0 1 (C ) 2)
2 hi Vet =@+ dé, t>0, x>0,x—at <0.
‘?‘atjx\/m1 am (I)(E.;)& > x>0, x—at<

Theoreml. Let e C2[0, o), ye CI[O, ). The first mixed problem (1) has a unique classical
solution, represented by the formulas (7), (8), of the class Cz([O, ) x[0, o)) if and only if $(0)=0,
v(0)=0, ¢"(0)=0.

P r o o f. From formulas (7) and (8) we conclude that ve Cz({(t, x)|x>0,t>20,x—at>0}) and
ve C2({(t,x)|x20,t20,x—at <0}) if ¢ C?[0,%), yeC'[0,x). So, the condition

0P v(t, at —0)=0F 0% (1, at +0), 0< p+k<2, p,ke{0,1,2}, ©9)

must be satisfied to v e C? ([0, ©) x[0, 0)). This condition is fulfilled if ¢(0)=0, y(0)=0, ¢"(0)=0. If
ve C%([0,0)x[0, ®)) then condition (9) is satisfied. This entails equalities ¢p(0) =0, y(0)=0, ¢"(0)=0.
The second mixed problem on the half-line. For the Neumann problem on the half-line,

Gtzw—aza%w—czw=0, 0<t<oo, 0<x<oo,
W(Oa x) = (I)(.X'), 6,\/(0, X) = W(X), x> Oa (10)
0,w(t,0)=0, t>0.

Asinthe previous problem, we assume that a > 0, c € {(x+iy)|(x=0and y > 0) or (x >0 and y =0)}.

We use the reflection method with even extensions to reduce the problem to the Cauchy problem on the
whole line. Define the even extensions of the initial data
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o(x), x>0,
(I)(—X), x < 0>

weven(x)={ v, x>0, (1)

deven (¥) = { w(-x), x<0,

and consider the following Cauchy problem on the whole line

(12)

{atzu—azaiu—czuzO, 0<t<oo, 0<x<o0,

u(0, x)= ¢even (x), 6;“(0, X)=VWYeven(X), —00<x <00

The solution u to the problem (12) will satisfy u%(0,7)=0 for all #>0. Similar to the case of the
Dirichlet problem, the restriction w(¢, x) = u(¢, x) | >0 Will be the unique solution to the Neumann prob-
lem (10).

Using generalized d’Alembert’s formula for the solution u of (12), and taking the restriction to x > 0,
we obtain

V(t’x)z¢even(X+at)+¢even(X—al)+ 1 xJ.a Io[g ,0212—(§—x)2j\l/even(§)d§+

2 261 x—at (13)

Ctx+at 1 c 3 2_ - 3
= mh(g\/m ) ]¢even<é>dé, £>0, x>0.

Again it is necessary to consider the two cases x > at and 0 < x < at separately. Using the definitions
(11), the solution (13) can be written as

v(t,x)=¢(x+at)+¢(x_at)+ 1 “I‘”IO(% /aztz_(&_x)sz(é)d&+

2 foat

ct ¥t 1 c [2.2 2
[1(; a’t”—(E—x) ](I)(&)def;, x>0, t>0, x—at>0,

+=
2 x;[at \/a2t2 —(&—x)z

_ 9(x+at) +¢(at - x) ct ¥ 1 ¢ 22 ., 2 14
w(t, x) > + { mll[a«/at (E-x) )¢(§)d§+ (14)

+ixja Io (2\/ - (E-x)° ]w(é)d§+iaj:xlo (2,/6&2 —(E+x)? jw(g)da+
0

2a

ct a-x 1 c 2.2 2
+? Ii| —at"=(E+x)" |0E)dE, x>0, t>0, x—at<O0.

(J) \/aztz_(§+x)2 a

Theorem?2. Let e c?o, ©), yE c'o, o). The second mixed problem (10) has the unique
classical solution, represented by the formula (14), of the class C 2 ([0, 0) x[0, 0)) if and only if $'(0) =0,
v'(0)=0.

P ro o f. To prove this theorem, it needs to repeat the proof of Theorem 1.

The first mixed problem on a finite interval. We would like to apply the same method to the
boundary value problems on the finite interval, which corresponds to the physical case of a potential
well. Consider the Dirichlet problem on the finite line

Gtzv—azaiv—czv=0, O<t<ow, O0<x<l,

v(0, x) = d(x), 0,v(0,x)=y(x), x>0, (15)
v(t,0)=v(¢,1)=0, t > 0.

The homogeneous Dirichlet conditions correspond to the quantum particle in a box model (infinite
potential well).
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Recall that the idea of the reflection method is to extend the initial data to the whole line in such
a way, that the boundary conditions are automatically satisfied. For the homogeneous Dirichlet data the
appropriate choice is the odd extension. In this case, we need to extend the initial data ¢, y, which are
defined only on the interval 0 < x </, in such a way that the resulting extensions are odd with respect to
both x=0, and x=/. That is, the extensions must satisfy

S(=x)==f(x) and f(=x)==f(l+X). (16)

Notice that for such a function f(0)=-/(0) from the first condition, and f(/)=—f (/) from the
second condition, hence, f(0)= f(/)=0. Subsequently, boundary conditions will be automatically sat-
isfied for the solution to the Cauchy problem with such data. Notice that the conditions (16) imply func-
tions that are odd with respect to both x=0 and x =/ satisty f(2/+x)=—f(—x)= f(x), which means
that such functions must be 2/-periodic. Using this we can define the extensions of the initial data ¢, y as

o(x), 0<x<l, y(x), 0<x<l,
Qext(¥) = —0(—x), —-I<x<0, Yext (X) = —y(-x), —I<x<0,
extended to be 2/ — periodic, extended to be 2/ — periodic.

Now, consider the Cauchy problem on the whole line with the extended initial data

(17)

{Gl‘zu—azaiu—czuzo, O<t<oo, 0<x<o00,

u(0, x) = dext (x), 0u(0, X) =Wext (x), —0<x<o0.

By generalized d’Alembert’s formula, the solution of (17) will be given as

u(t,x):¢ext(X+al‘)+¢ext(X—at)+ 1 x}atlo(g ,aztz—(é—x)zj\l/ext(é)dé‘}'

2 2a ", as)

ct i 1 zh(fm j¢ext(é)d<i,f>0’x>0'
E-x)? \4

+?x—'[at \/61212 -

From (18) we automatically have u(0, ) =u(/,¢) =0, and the restriction

V(t, X) = u(t, X) |OSxSl (19)

will solve the boundary value problem (15).

Theorem3. Let ¢ CZ[O, ®), Y e Cl[O, ). The first mixed problem (15) has a unique classical
solution, represented by the formulas (18), (19), of the class C%([0, ) x[0, 1) if and only if $(0)=0,
v(0)=0, ¢"(0)=0, ¢(/)=0, w(1)=0, ¢"(/)=0.

Proof. Seel[4].

Conclusion. We derived the solutions to the Klein—Gordon equation on the half-line in much the
same way as was done for the wave equation and the heat equation [8; 9]. That is, we reduced the initial/
boundary value problem to the Cauchy problem over the whole line through the appropriate extension of
the initial data. The solutions are obtained in an explicit analytical form. The necessary and sufficient
conditions for the existence and uniqueness of classical solutions are derived. It is planned to apply the
method of reflections to other partial differential equations in further research.
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