ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

MATEMATUKA MATHEMATICS

УДК 513.88 https://doi.org/10.29235/1561-8323-2022-66-6-567-573 Поступило в редакцию 10.03.2022 Received 10.03.2022

В. И. Бахтин, И. А. Иванишко, А. В. Лебедев

Белорусский государственный университет, Минск, Республика Беларусь

СПЕКТРАЛЬНЫЙ ПОТЕНЦИАЛ ТРАНСФЕР-ОПЕРАТОРОВ И ТОПОЛОГИЧЕСКОЕ ДАВЛЕНИЕ

Аннотация. Описаны взаимосвязи между спектральным радиусом трансфер-операторов и топологическим давлением для конечнолистных накрытий. Связи описываются с использованием новых динамических характеристик — разветвленности и форвард-энтропии. В общей ситуации эти характеристики позволяют выписать оценки для упомянутых объектов, которые переходят в равенства для несжимающих отображений.

Ключевые слова: спектральный потенциал, топологическое давление, топологическая энтропия, разветвленность, форвард-энтропия

Для цитирования. Бахтин, В. И. Спектральный потенциал трансфер-операторов и топологическое давление / В. И. Бахтин, И. А. Иванишко, А. В. Лебедев // Докл. Нац. акад. наук Беларуси. -2022. - Т. 66, № 6. - С. 567–573. https://doi.org/10.29235/1561-8323-2022-66-6-567-573

Victor I. Bakhtin, Iya A. Ivanishko, Andrei V. Lebedev

Belarusian State University, Minsk, Republic of Belarus

SPECTRAL POTENTIAL OF TRANSFER OPERATORS AND TOPOLOGICAL PRESSURE

Abstract. The article describes the relations between spectral radius of transfer operators and topological pressure. The key role is played by new dynamical characteristics – rami-rate and forward entropy.

Keywords: spectral potential, topological pressure, topological entropy, rami-rate, forward entropy

For citation. Bakhtin V. I., Ivanishko I. A., Lebedev A. V. Spectral potential of transfer operators and topological pressure. *Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2022, vol. 66, no. 6, pp. 567–573 (in Russian). https://doi.org/10.29235/1561-8323-2022-66-6-567-573

Трансфер-операторы и операторы взвешенного сдвига являются важными объектами как в теории динамических систем, так и во многих других областях анализа. Невозможно переоценить роль энтропии и топологического давления в теории информации и математических основах термодинамического формализма. Сообщение посвящено анализу взаимосвязей между спектральным радиусом упомянутых операторов и топологическим давлением.

Пусть X— компактное хаусдорфово пространство, C(X)— банахово пространство непрерывных функций на X, снабженное равномерной нормой, и α : $X \to X$ — непрерывное отображение. Это отображение задает динамическую систему с дискретным временем, которую мы обозначаем через (X, α) . Линейный оператор A: $C(X) \to C(X)$ называется *трансфер-оператором* для динамической системы (X, α) , если

- а) A положительный оператор (т. е. отображает неотрицательные функции в неотрицательные) и
 - б) удовлетворяет гомологическому тождеству

$$A((f \circ \alpha)g) = fAg, \ f, g \in C(X).$$

[©] Бахтин В. И., Иванишко И. А., Лебедев А. В., 2022

Типичным (популярным) примером трансфер-оператора является классический оператор Перрона-Фробениуса

$$Af(x) := \sum_{y \in \alpha^{-1}(x)} a(y) f(y), \tag{1}$$

где $a \in C(X)$ — некоторая неотрицательная функция. Этот оператор корректно определен, если α является локальным гомеоморфизмом и отображением на.

Для заданного трансфер-оператора A мы определяем семейство операторов $A_{\psi}: C(X) \to C(X)$, зависящих от функционального параметра $\psi \in C(X, \mathbb{R})$, где $C(X, \mathbb{R})$ – пространство непрерывных вещественнозначных функций, с помощью формулы

$$A_{\mathsf{W}} f \coloneqq A(e^{\mathsf{V}} f). \tag{2}$$

Очевидно, все операторы семейства являются трансфер-операторами. Через $\lambda(\psi)$ обозначаем логарифм спектрального радиуса оператора $A_{\rm w}$, т. е.

$$\lambda(\psi) = \lim_{n \to \infty} \frac{1}{n} \ln \left\| A_{\psi}^{n} \right\|. \tag{3}$$

Функционал $\lambda(\psi)$ называется спектральным потенциалом.

Одним их важных объектов в теории динамических систем является топологическое давление $P(\alpha, \psi), \psi \in C(X, \mathbb{R})$ (см. [1], подробное определение топологического давления дано в разделе 1). Топологическое давление появляется, в частности, в анализе динамических систем (X, α) , где X – компактное метрическое пространство и является принципиальной компонентой термодинамического формализма.

Пусть X – компактное метрическое пространство, $\alpha: X \to X$ – локальный гомеоморфизм и на C(X) задан трансфер-оператор

$$Af(x) \coloneqq \sum_{y \in \alpha^{-1}(x)} f(y).$$

Один из фундаментальных принципов термодинамического формализма может быть записан в виде

$$\lambda(\psi) = P(\alpha, \psi)$$
 для растягивающего отображения α .

В этом направлении получено довольно много результатов [2–9]. Однако ни в одном из этих источников не рассматривается общий случай: обычно предполагается, что α – топологически перемешивающее, e^{ψ} – гелдеровская и пространство X – конечномерное многообразие или пространство цепи Маркова. Недавно в [10] доказано, что $\lambda(\psi) = P(\alpha, \psi)$ для произвольного открытого растягивающего отображения α : $X \to X$ компактного метрического пространства и произвольной функции $\psi \in C(X, \mathbb{R})$.

Как мы отметили, вышеупомянутые объекты: спектральный потенциал и топологическое давление имеют разную природу и, в общей ситуации, не могут быть сведены один к другому. Цель работы – вскрыть общие аналитические условия, при которых $\lambda(\psi)$ и $P(\alpha, \psi)$ связаны между собой и описать возникающие связи.

Спектральный потенциал Перрона—Фробениуса и топологическое давление. Напомним определение топологического давления и топологической энтропии. Эти объекты определяются для динамической системы (X, α) , где X – компактное метрическое пространство с метрикой d.

Определение использует так называемые (n, ε) -стягивающие подмножества X. Для каждого $n \in \mathbb{N}$ рассматривается метрика d_n на X, заданная формулой

$$d_n(x, y) := \max_{i=0, n-1} d(\alpha^i(x), \alpha^i(y)),$$

где d — исходная метрика на X. Для каждого $\varepsilon > 0$ подмножество $E \subset X$ называется (n, ε) -стивающим, если оно является ε -сетью для X по отношению к метрике d_n , т. е. для любого $x \in X$ существует $y \in E$, такой что $d_n(x,y) < \varepsilon$.

Определение топологической энтропии дается следующим образом:

$$h(\alpha) \coloneqq \lim_{\varepsilon \to 0} \overline{\lim_{n \to \infty}} \inf \Big\{ |E|^{1/n} : E - (n, \varepsilon) \text{-стягивающее} \Big\}. \tag{4}$$

Топологическое давление является (взвешенным) обобщением понятия топологической энтропии. Именно, для каждой положительной функции $a \in C(X)$ топологическое давление $P(\alpha, \ln a)$ задается формулой

$$P(\alpha, \ln a) \coloneqq \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \inf \left\{ \left(\sum_{y \in E} \prod_{i=0}^{n-1} a(\alpha^i(y)) \right)^{1/n} : E - (n, \epsilon) \text{-стягивающее} \right\}.$$

Ясно, что $h(\alpha) = P(\alpha, 0)$.

Введем теперь числовые характеристики, которые будут использоваться для оценивания энтропии, спектрального потенциала и топологического давления.

Всюду в дальнейшем будем предполагать, что α – конечнолистное накрытие X, т. е. удовлетворяет условию

$$\sup_{x \in X} \left| \alpha^{-1}(x) \right| < \infty, \tag{5}$$

Положим

$$\omega(\alpha) := \ln \overline{\lim_{n \to \infty}} \sup_{x \in X} |\alpha^{-n}(x)|^{1/n}.$$
 (6)

Мы называем число $\omega(\alpha)$ разветвленностью, так как оно оценивает скорость разрастания прообразов α .

В случае, когда X – метрическое пространство мы полагаем

$$\gamma(\alpha) := \ln \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \inf \left\{ |\alpha^n(E)|^{1/n} : E - (n, \epsilon) \text{-стягивающее для } X \right\}.$$
 (7)

Сравнивая формулы (4) и (7) мы естественным образом называем $\gamma(\alpha)$ форвард-энтропией. Так как $|\alpha^n(E)| \le |E|$, то из определений (4) и (7) следует, что

$$\gamma(\alpha) \le h(\alpha)$$
. (8)

Можно привести примеры, когда $\gamma(\alpha) < h(\alpha)$ (см., напр., лемму 2), поэтому в общей ситуации $\gamma(\alpha)$ и $h(\alpha)$ – разные характеристики α .

Легко проверить, что для локального гомеоморфизма α выполняется

$$\omega(\alpha) \le h(\alpha). \tag{9}$$

При этом, например, для обратимого α имеем $\omega(\alpha) = 0$, в то время как (выбирая подходящее обратимое отображение α) $h(\alpha)$ может быть любым неотрицательным числом (см., напр., [1, § 7.3]). Поэтому $\omega(\alpha)$ и $h(\alpha)$ – различные характеристики α .

 Π е м м а 1. Для характеристик $h(\alpha)$, $\gamma(\alpha)$ и $\omega(\alpha)$ выполняется неравенство

$$h(\alpha) \le \gamma(\alpha) + \omega(\alpha). \tag{10}$$

Доказательствовытекает из соотношений

$$h(\alpha) = \lim_{\varepsilon \to 0} \overline{\lim_{n \to \infty}} \inf \left\{ \left| E \right|^{1/n} : E - (n, \varepsilon) \text{-стягивающеe} \right\} \le$$

$$\le \lim_{\varepsilon \to 0} \overline{\lim_{n \to \infty}} \left[\inf \left\{ \left| \alpha^n(E) \right|^{1/n} : E - (n, \varepsilon) \text{-стягивающеe} \right\} \times \sup_{x \in X} \left| \alpha^{-n}(x) \right|^{1/n} \right] \le$$

$$\le \ln \left[\lim_{\varepsilon \to 0} \overline{\lim_{n \to \infty}} \inf \left\{ \left| \alpha^n(E) \right|^{1/n} : E - (n, \varepsilon) \text{-стягивающеe} \right\} \times \overline{\lim_{n \to \infty}} \sup_{x \in X} \left| \alpha^{-n}(x) \right|^{1/n} \right] =$$

$$= \gamma(\alpha) + \omega(\alpha). \square$$

Из данной леммы и наблюдения (8) вытекает

Следствие 1. В условиях, когда выполняется неравенство (9), имеет место

- (*i*) если $\omega(\alpha) = 0$, то $h(\alpha) = \gamma(\alpha)$,
- (*ii*) если $\gamma(\alpha) = 0$, то $h(\alpha) = \omega(\alpha)$.

3 а м е ч а н и е. Неравенство в (10) может быть строгим, и равенства $h(\alpha) = \gamma(\alpha)$ и $h(\alpha) = \omega(\alpha)$ могут имет место не только в случае, когда второе слагаемое (т. е. $\omega(\alpha)$ или $\gamma(\alpha)$ соответственно) равно 0 (см. пример далее).

Далее мы будем использовать объект типа спектрального потенциала, с помощью которого результаты представляются в наглядном виде.

Пусть (X, α) — динамическая система, удовлетворяющая условию (5). Для каждой неотрицательной функции $a \in C(X)$ мы полагаем

$$\ell(\alpha, a) := \ln \lim_{n \to \infty} \sup_{x \in X_{\alpha}} \left(\sum_{y \in \alpha^{-n}(x)} \prod_{i=0}^{n-1} a(\alpha^{i}(y)) \right)^{1/n}, \tag{11}$$

где принято соглашение $\ln 0 = -\infty$. Число $\ell(\alpha, a)$ называется потенциалом Перрона-Фробениуса.

3 а м е ч а н и е. Заметим, что $\ell(\alpha, a)$ – логарифм «спектрального радиуса» оператора Перрона—Фробениуса A, ассоциированного с (X, α) . Здесь выражение «спектральный радиус» взято в кавычки, поскольку, в общем случае когда α не является локальным гомеоморфизмом формула (1) не определяет оператора в C(X).

Следующий результат связывает топологическое давление со спектральным потенциалом Перрона–Фробениуса с помощью форвард-энтропии $\gamma(\alpha)$.

Теорема 1. Пусть X – компактное метрическое пространство, $\alpha: X \to X$ – локальный гомеоморфизм и $a \in C(X)$ – положительная функция, тогда

$$P(\alpha, \ln a) - \gamma(\alpha) \le \ell(\alpha, a) \le P(\alpha, \ln a).$$

Следствие 2. В условиях теоремы 1, если $\gamma(\alpha) = 0$, то $P(\alpha, \ln a) = \ell(\alpha, a)$.

3 а м е ч а н и е. Если $\gamma(\alpha) > 0$, то может возникнуть ситуация

$$P(\alpha, \ln a) - \gamma(\alpha) = \ell(\alpha, a) < P(\alpha, \ln a).$$

В самом деле, пусть α : $X \to X$ — гомеоморфизм. Тогда $\omega(\alpha) = 0$ и $h(\alpha) = \gamma(\alpha)$. Выбирая подходящие X и α можем предполагать, что $h(\alpha) = \gamma(\alpha)$ — любое (наперед заданное) положительное число. Для этих X и α выберем a=1. Тогда $\ell(a,1)=0$ и

$$P(\alpha, \ln 1) = P(\alpha, 0) = h(\alpha) = \gamma(\alpha) > 0.$$

Теорема 1 показывает важность форвард-энтропии $\gamma(\alpha)$. Эта характеристика легко вычисляется в присутствии следующего свойства.

С в о й с т в о (*). Для любой пары (n, ε) , $n \in \mathbb{N}$, $\varepsilon > 0$ существует конечное множество $F(n, \varepsilon) \subset X$, такое, что множество $\alpha^{-n}(F(n, \varepsilon)) - (n, \varepsilon)$ -стягивающее и $\lim_{(n \to \infty)} |F(n, \varepsilon)|^{1/n} = 1$.

Это свойство выглядит несколько сложно. Частным (более удобным) вариантом является

С в о й с т в о (**). Для любого $\varepsilon > 0$ существует конечное множество $F(\varepsilon) \subset X$, такое, что для каждого $n \in \mathbb{N}$ множество $\alpha^{-n}(F(\varepsilon))$ является (n, ε) -стягивающим.

Ясно, что свойство (**) влечет свойство (*), так как можно просто положить $F(n, \varepsilon) := F(\varepsilon)$ для всех $n \in \mathbb{N}$.

 Π е м м а 2. Если α обладает свойством (*), то $\gamma(\alpha)=0$ (и, следовательно, $h(\alpha)=\omega(\alpha)$).

Доказательство. По определению $\gamma(\alpha)$ (7) имеем

$$\gamma(\alpha) \leq \ln \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \left| \alpha^{n} (\alpha^{-n} (F(n, \epsilon))) \right|^{1/n} = \ln \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \left| F(n, \epsilon) \right|^{1/n} = 0. \quad \Box$$

Из леммы 2 и теоремы 1 вытекает

Теорема 2. Если α обладает свойством (*), то $P(\alpha, \ln a) = \ell(\alpha, a)$.

Приводимая ниже лемма 3 представляет широкий класс динамических систем, обладающих свойством (**) (а, значит, и свойством (*)).

Напомним, что отображение $\alpha: X \to X$ метрического пространства (X, d) называется *несжимающим*, если существует r > 0, такое, что неравенство $d(x, y) \le r$ влечет неравенство $d(\alpha(x), \alpha(y)) \ge d(x, y)$.

 Π е м м а 3. Если отображение $\alpha: X \to X$ является несжимающим и открытым, то оно обладает свойством (**).

Из леммы 2, теоремы 2 и леммы 3 вытекает

Т е о р е м а 3. Пусть α : $X \to X$ – непрерывное и несжимающее отображение. Тогда

- (i) $\gamma(\alpha) = 0$ и, соответственно, $h(\alpha) = \omega(\alpha)$;
- (ii) $P(\alpha, \ln a) = \ell(\alpha, a)$.

3 а м е ч а н и е. Свойства (i) и (ii) для растягивающих диффеоморфизмов компактных гладких многообразий анонсированы без доказательств в [7].

Следующий пример показывает, что неравенство в (10) может быть строгим.

П р и м е р. Пусть $X = S^1 \sqcup Y$, где S^1 – единичная окружность $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ и Y – некоторое компактное метрическое пространство. Положим $\alpha := \alpha_1 \oplus \alpha_2$, где $\alpha_1(z) = z^N$, $z \in S^1$, а α_2 – гомеоморфизм Y. По теореме S^1 (S^1) и S^2 – S^1 и S^2 – гомеоморфизм S^2 но теореме S^3 (S^3). С другой стороны, так как S^3 – гомеоморфизм, то S^3 и поэтому S^3 – выбирая подходящим образом S^3 и S^3 мы можем считать, что S^3 – произвольное наперед заданное неотрицательное число. Заметим также, что S^3 и S^3 и S^3 – S^3 и S^3 . Следовательно

$$h(\alpha) = \max\{h(\alpha_1), h(\alpha_2)\} = \max\{\omega(\alpha_1), \gamma(\alpha_2)\} = \max\{\omega(\alpha), \gamma(\alpha)\}.$$

В частности, если $\gamma(\alpha_2) > 0$, то

$$h(\alpha) < \omega(\alpha) + \gamma(\alpha)$$
.

Отметим также, что такой конструкцией мы можем получить $h(\alpha) = \omega(\alpha)$ или $h(\alpha) = \gamma(\alpha)$ и при этом $\gamma(\alpha) \neq 0$ и $\omega(\alpha) \neq 0$.

Спектральный потенциал и топологическое давление. Переходим к описанию связей между спектральным потенциалом $\lambda(\psi)$ и топологическим давлением. В этом разделе предполагается, что A — заданный трансфер-оператор для динамической системы (X, α) , которая удовлетворяет условию (5); и A_{ψ} , $\lambda(\psi)$ и $\ell(\alpha, a)$ определены соответственно формулами (2), (3) и (11). В такой ситуации трансфер-оператор A имеет вид

$$[Af](x) = \sum_{y \in \alpha^{-1}(x)} \rho(y) f(y), f \in C(X), x \in X,$$

где ρ — некоторая неотрицательная функция на X. Функцию ρ обычно называют *коциклом*, ассоциированным с трансфер-оператором A.

Коцикл р обладает весьма специальными свойствами. Некоторые из них описаны ниже.

Точку $x \in X$ будем называть

точкой локальной инъективности (ТЛИ), если у нее существует окрестность U(x), такая, что отображение $\alpha: U(x) \to X$ инъективно;

точкой локальной открытости (ТЛО), если для любой ее окрестности U(x) образ $\alpha(U(x))$ содержит некоторую окрестность точки $\alpha(x)$;

точкой локального гомеоморфизма (ТЛГ), если x и $\alpha(x)$ обладают α -гомеоморфными окрестностями.

Лемма 4. При выполнении условия (5) имеет место

- а) если $\rho(x_0) = 0$, то ρ непрерывная функция в точке x_0 ;
- б) если $\rho(x_0) \neq 0$, то ρ непрерывна в x_0 тогда и только тогда, когда x_0 ТЛИ;
- в) если $\rho(x_0) \neq 0$, то $x_0 TЛО$;
- z) если $\rho(x_0) \neq 0$, то $x_0 TЛИ$ тогда и только тогда, когда она TЛГ.

Следующее наблюдение связывает спектральный потенциал $\lambda(\psi)$, определенный в (3), и спектральный потенциал Перрона—Фробениуса $\ell(\alpha, a)$, определенный в (11).

Т е о р е м а 4. Пусть α обладает свойством (5) и ρ – непрерывная функция в частности, это справедливо, если α : $X \to X$ – локальный гомеоморфизм. Тогда

$$\lambda(\psi) = \ell(\alpha, \rho e^{\psi}).$$

Данное утверждение вместе с результатами раздела «Спектральный потенциал Перрона—Фробениуса и топологическое давление» позволяет связать спектральный потенциал с топологическим давлением.

Т е о р е м а 5. Пусть X – компактное метрическое пространство и α – локальный гомеоморфизм. Если α обладает свойством (*) и ρ – строго положительная функция, то

$$\lambda(\psi) = P(\alpha, \psi + \ln \rho).$$

Доказательство. Положим $a_{\psi} := \rho e^{\psi}$. Применяя теоремы 4 и 1 получаем

$$\lambda(\psi) = \ell(\alpha, a_{\psi}) = P(\alpha, \ln a_{\psi}) = P(\alpha, \psi + \ln \rho). \quad \Box$$

Используя в приведенном доказательстве теорему 3 вместо теоремы 1 мы приходим к следующему утверждению.

Т е о р е м а 6. Пусть X – компактное метрическое пространство, α : $X \to X$ – непрерывное, несжимающее, открытое отображение и ρ – строго положительная функция, тогда

$$\lambda(\psi) = P(\alpha, \psi + \ln \rho).$$

Список использованных источников

- 1. Walters, P. An introduction to ergodic theory / P. Walters // Graduate Texts in Mathematics. New York; Berlin: Springer-Verlag, 1982. Vol. 79.
- 2. Bowen, R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms / R. Bowen // Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer, 1975. Vol. 470. https://doi.org/10.1007/bfb0081279
- 3. Ruelle, D. Thermodynamic formalism / D. Ruelle // Encyclopedia of Math. and its Appl, Reading, Mass. Addison-Wesley, 1978. Vol. 5.
- 4. Walters, P. Invariant measures and equilibrium states for some mappings which expand distances / P. Walters // Trans. Am. Math. Soc. 1978. Vol. 236. P. 121–153. https://doi.org/10.1090/s0002-9947-1978-0466493-1
- 5. Латушкин, Ю. Д. Операторы взвешенного сдвига на топологической марковской цепи / Ю. Д. Латушкин, А. М. Степин // Функц. анализ и его приложения. 1988. Т. 22, № 4. С. 86–87.
- 6. Ruelle, D. The thermodynamic formalism for expanding maps / D. Ruelle // Comm. Math. Phys. 1989. Vol. 125, N 2. P. 239–262. https://doi.org/10.1007/bf01217908
- 7. Лебедев, А. Спектральный радиус оператора взвешенного сдвига, вариационные принципы и топологическое давление / А. Лебедев, О. Маслак // Spectral and evolutionary problems. Proceedings of the Eighth Crimean Autumn Mathematical School Symposium (Simferopol, 1998). Moscow, 1998. Р. 26–34.
- 8. Fan, A. H. On Ruelle-Perron-Frobenius Operators. I. Ruelle's Theorem / A. H. Fan, Y. P. Jiang // Commun. Math. Phys. 2001. Vol. 223, N 1. P. 125–141. https://doi.org/10.1007/s002200100538
- 9. Przytycki, F. Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series 371 / F. Przytycki, M. Urbanski. Cambridge University Press, 2010. https://doi.org/10.1017/cbo9781139193184
- 10. Bardadyn, K. Spectrum of weighted isometries: *C**-algebras, transfer operators and topological pressure / K. Bardadyn, B. K. Kwasniewski // Israel J. Math. 2021. Vol. 246, N 1. P. 149–210. https://doi.org/10.1007/s11856-021-2246-6

References

- 1. Walters P. An introduction to ergodic theory. *Graduate Texts in Mathematics, vol. 79.* New York, Berlin, Springer-Verlag, 1982.
- 2. Bowen R. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Berlin, Heidelberg, New York, Springer, 1975. https://doi.org/10.1007/bfb0081279
 - 3. Ruelle D. Thermodynamic formalism. Encyclopedia of Math. and its Appl, Vol. 5, Reading, Mass. Addison-Wesley, 1978.
- 4. Walters P. Invariant measures and equilibrium states for some mappings which expand distances. *Transactions of the American Mathematical Society*, 1978, vol. 236, pp. 121–153. https://doi.org/10.1090/s0002-9947-1978-0466493-1
- 5. Latushkin Yu. D., Stepin A. M. Weighted shift operators on a topological Markov chain. *Functional Analysis and Its Applications*, 1988, vol. 22, no. 4, pp. 330–331. https://doi.org/10.1007/bf01077431

- 6. Ruelle D. The thermodynamic formalism for expanding maps. Communications in Mathematical Physics, 1989, vol. 125, no. 2, pp. 239–262. https://doi.org/10.1007/bf01217908
- 7. Lebedev A., Maslak O. Spectral radius of weighted shift operator, variational principles and topological pressure. *Spectral and evolutionary problems. Proceedings of the Eighth Crimean Autumn Mathematical School Symposium (Simferopol, 1998)*. Moscow, 1998, pp. 26–34 (in Russian).
- 8. Fan A. H., Jiang Y. P. On Ruelle-Perron-Frobenius Operators. I. Ruelle Theorem. *Communications in Mathematical Physics*, 2001, vol. 223, no. 1, pp. 125–141. https://doi.org/10.1007/s002200100538
- 9. Przytycki F., Urbanski M. Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series 371. Cambridge University Press, 2010. https://doi.org/10.1017/cbo9781139193184
- 10. Bardadyn K., Kwasniewski B. K. Spectrum of weighted isometries: C*-algebras, transfer operators and topological pressure. *Israel Journal of Mathematics*, 2021, vol. 246, no. 1, pp. 149–210. https://doi.org/10.1007/s11856-021-2246-6

Информация об авторах

Бахтин Виктор Иванович — д-р физ.-мат. наук, профессор. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: bakhtin@tut.by.

Иванишко Ия Александровна — канд. физ-мат. наук, ст. преподаватель. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: iya.ivanishko@gmail.com.

Лебедев Андрей Владимирович — д-р физ.-мат. наук, профессор, заведующий кафедрой. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: lebedev@bsu.by.

Information about the authors

Bakhtin Victor I. – D. Sc. (Physics and Mathematics), Professor. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: bakhtin@tut.by.

Ivanishko Iya A. – Ph. D. (Physics and Mathematics), Senior Lecturer. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: iya. iyanishko@gmail.com.

Lebedev Andrei V. – D. Sc. (Physics and Mathematics), Professor, Head of the Department. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: lebedev@bsu.by.