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CLASSICAL SOLUTION OF THE INITIAL-VALUE PROBLEM
FOR A ONE-DIMENSIONAL QUASILINEAR WAVE EQUATION

Abstract. For a one-dimensional mildly quasilinear wave equation given in the upper half-plane, we consider the Cauchy
problem. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of some inte-
gro-differential equation. The solvability of this equation, as well the smoothness of its solution, is studied. For the problem in
question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.
When given data is not enough smooth a mild solution is constructed.
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Axanemuk B. U. Kop3iok, 5. B. Pyabko
Hnemumym mamemamuru Hayuonanvroi akademuu nayx Benapycu, Munck, Pecnybnuxa benapyce

KJIACCHUYECKOE PEHIEHHUE 3AJAYHU KON
JIJIs1 OMHOMEPHOI'O KBASHUJIMHEMNHOI'O BOJTHOBOI'O YPABHEHM I

AnHoTanus. {11 oqHOMEpPHOro ¢j1a00 KBa3WJIMHEITHOrO BOJTHOBOI'O YPaBHEHM S, 3aJaHHOI'0 B BEpXHEH 10y IIIOCKOCTH,
paccMmarpuBaeTcs 3anada Komu. PemeHue cTpouTcst B HEABHOM aHAJIMTUUYECKOM BHJIE KaK PEIICHHE HEKOTOPOrO0 MHTErpo-
muddepenuansHoro ypasaenus. [IpoBoauTcest ucclieoBaHUE Pa3peliMMOCTH 3TOTO YPAaBHEHHMs, a TaKXKe IJaJKOCTH ero
pewenus. Jlns paccMaTpuBaeMoil 3ajadyy J0Ka3bIBAETCS CIMHCTBEHHOCTb PEILCHUS U YCTaHABJIMBAIOTCS YCJIOBUS, IPU
BBIIIOJIHEHUU KOTOPBIX CYILECTBYET €€ KJaccuueckoe peueHue. lIpy HenocTaTOYHON INMajKOCTH HadallbHBIX JaHHBIX
CTpOMTCS ci1aboe penieHue.

KuroueBble c10oBa: HeslMHEHHOE BOJIHOBOE ypaBHEHUe, 3a1a4a Koy, MeTo XapakTepUCTUK, IPUHIUI HEMOJBUXHON
TOUKH, KJIACCUYECKOE PELICHUE

Jast nmtupoBanus. Kopsiok, B. 1. Knaccuueckoe pemenue 3agaun Koy a1 0lHOMEpHOro KBa3uJIMHEHHOIO BOJIHOBOI'O
ypaBuenust / B. U. Kopsrwok, 5. B. Pyneko / Jlokn. Ham. akan. Hayk Bemapycu. — 2023, — T. 67, Ne 1. — C. 14-19. https://doi.
org/10.29235/1561-8323-2023-67-1-14-19

Introduction. Continuous media are described mainly by nonlinear partial differential equations.
The choice of linear or nonlinear equations for describing a medium depends on the role played by non-
linear effects and is determined by the specific physical situation. For example, when describing the
propagation of laser pulses, it is necessary to take into account the dependence of the refractive index
of the medium on the electromagnetic field intensity.

The linearization of nonlinear equations of mathematical physics does not always lead to meaning-
ful results. It may turn out that the linearized equations apply to the physical process in question only for
some finite time. Moreover, from the viewpoint of physics, it is often “essentially nonlinear” solutions,
qualitatively different from the solutions of linear equations, that are extremely important for nonlinear
equations of mathematical physics. These can be stationary solutions of the soliton type, localized in one
or several dimensions, or solutions of the wave collapse type, which describe the spontaneous concentra-
tion of energy in small regions of space [1].

The solvability in some function spaces of the Cauchy problem and boundary value problems is es-
tablished for a wide class of weakly nonlinear hyperbolic equations of the form [2]
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(@7 = Ayu(t, x) = £ (6, %, u(t, x), d,u(t, x), Vu(t, %)), 1 >0, x e Qc R".

We note that various fixed-point theorems and the method of successive approximations are often
used to find solutions to nonlinear equations. For example, Banach’s fixed point theorem was successful-
ly used to obtain a weak solution to the Cauchy problem for a mildly nonlinear wave equation with
a nonlinearity of the form f(Vu, 0,u,u) [3]. In the paper [4], the method of successive approximations
was used to construct a twice continuously differentiable solution of the Cauchy problem on a finite time
interval for the nonlinear wave equation with a nonlinearity of the form G'(|u |)u with a certain smooth-
ness and boundedness of the nonlinearity G, initial functions, and their derivatives; moreover, under
additional conditions on the nonlinearity, the solution is determined in some cone. In the article [5], an
auxiliary system with a viscosity parameter was used to build weak solutions for a quasilinear wave
equation. A priori estimates and the method of characteristics were used to construct a strong general-
ized solution for a wave equation with a dissipative term (a nonlinearity of the form g(¢, x, u)0,u ) [6].

We can see that the Cauchy problem is mostly studied with infinitely differentiable small [7-11] or
slowly decaying data [12]. It is mainly due to the methods of study and the function spaces where the
solution is sought.

In the present article, we use a fixed point principle to solve the Cauchy problem for a nonlinear in-
homogeneous hyperbolic equation of the second order. We also derive conditions under which the solu-
tion of the Cauchy problem will be classical. Moreover, we do not assume that the initial data of the
problem are infinitely differentiable and/or small but take them sufficiently smooth, namely, from the
classes C% and C. In the future, we will use the obtained results to study initial-boundary value problems.

Statement of the problem. In the domain (0, o) x R of two independent variables (z, x) € (0, 0)x R < R?,
consider the one-dimensional nonlinear equation

d2u(t, x)—a’02u(t, x)+ f(t, x,u(t, x), 0,u(t, x), 0u(t, x)) = F(t, x), (¢, x) € (0, 0) xR, (1)

where a € (0, ), F'is a function given on the set [0, ) xR, fis a function given on the set [0, c0) x R,
Equation (1) is equipped with the initial condition

u(0, x) =0(x), O0u(0,x)=y(x), xR, @)

where ¢ and y are some real-valued functions defined on the real axis.
It should be noted that Equation (1) can be reduced to a first-order semilinear hyperbolic system

az‘u(ta X) =CI(t’ X),
0:p(t, x)—0xq(t,x) =0,
atq(ta x)—azaxp(t, X) ZF(t9 X)—f(t, x:u(ta X), p(ta X), Q(t, X)),

with respect to the unknown functions u, ¢ = 0,u, and p =0 ,u, and weak solutions of the original prob-
lem correspond to the so-called solutions in the broad sense for the equivalent system. Results on the
existence and uniqueness of such solutions for general semilinear hyperbolic systems are well known
and presented in the works [13; 14]. However, in these papers, generally speaking, only local solutions
are established. They will be global classical provided they are bounded in any characteristic triangle
and the given functions f, F, ¢, ¢, and y are continuously differentiable. And the answer to the question
“What conditions must be imposed on these functions to obtain global classical solutions?” is not avail-
able in [13; 14].

Some explicit conditions for the existence of a local classical solution to the problem (1)—(2) are giv-
en in the book [15] and article [16].

In contrast to many works devoted to the Cauchy problem, we will not assume the initial data of the prob-
lem to be infinitely differentiable and/or small but take them sufficiently smooth, namely, F' € C ! ([0, ©)xR),
7 eCl([0,0)xR*), $eC?(R), and y e C (R).
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Integro-differential equation. Introduce into consideration the operator K acting by the formula

_ d(x—at)+d(x+at) L”‘”
= 5 +2axft\ll(§)d§+

Klu](z, x)

©)

t x+a(t-1)

+LIdT [ (F(,&) - f(t.&u(t, &), 0,u(t,§), 0.u(t, §)dE, (1, x)€[0, ) xR.

2ay x—a(t-1)

In the closure [0,)xR of the domain (0,©)xR, we consider the nonlinear integro-differential
equation
u(t, x) = Ku](t, x), (¢, x) €[0,0)xR. )

Lemma l Let the conditions FeC'([0,0)xR), feC'([0,0)xR"), ¢eC2(R), and
v e C'(R) be satisfied. The function u is a continuous-differentiable solution of Equation (4) if it is
a classical solution of the initial-value problem (1), (2).

Proof. See[l7].

Lemma 1 can also be proved using the method of characteristics [18] or Green’s theorem.

Lemma 2 Let the conditions FeCY([0,0)xR), feC'(0,0)xR*), ¢eC*(R), and
yel 1(]R) be satisfied. The function u belongs to the class C 2([0, o) xR) and satisfies Equation (1)
and conditions (2) if it is a continuous-differentiable solution of Equation (4).

P r o o f. If the function u is a continuous-differentiable solution of Equation (4), then, by virtue
of the smoothness conditions F e C'([0,0)xR), feC([0,0)xR*), ¢eC?*(R), and yeC'(R),
similarly to [19; 20], we conclude that u € C?([0, ) x R). Substituting the representations (4) into (1)
and (2), we verify that the function u satisfies Equation (1) in (0,0)xR and conditions (2) in R. The
proof of the lemma is complete.

Theoreml Let the conditions FeC'([0,0)xR), feCl([O,oo)xR4), ¢EC2(R) and
\URS C'(R) be satisfied. The function u belongs to the class c([o, o) xR) and satisfies Equation (1)
and conditions (2) if and only if it is a continuous-differentiable solution of Equation (4).

The p r o o f of the theorem follows from Lemmas 1 and 2.

For definiteness, we define the topology of the Fréchet space C/([0, T]xR) by a countable family
of seminorms P, = ||'||Cj(Qm) , meNnN[ceil(aT +1), ), where

Q,, =Conv{(0,—-m), (0,m),(T,al —m),(T,aT +m)}.

T heorem?2. Let the conditions FeC([0,0)xR), feC(O0, oo)xR4)), oe CI(R) and
vy € C(R) be satisfied, and let the function f'satisfy the Lipschitz condition with constant L with respect
tothethreelastvariables,i. e., |f(t, X, 21,22,23)— f (¢, x, Wy, wa, w3 )| < L(|21 - w1| + |Zz - wz| + |Z3 - W3|).
Then the operator K : Cl(Qm) — Cl(Qm), acting by the formula (3), is £ — Lipschitz, where
£=3Lmax{T,T*}xmax{l,a"'}.

P ro o f. Direct verification.

Corollary 1 Letthe conditions F e C([0,0)xR), feC(]O0, oo)xR4), be Cl(]R) and
y € C(R) be satisfied, let the function f'satisfy the Lipschitz condition with constant L with respect to the
three last variables, and let 7 <min{l, 3L max{l,a'})"'}. Then the operator K :C'([0,T]xR)+>
c! ([0, T]xR), acting by the formula (3), is p,, -contraction for any m € N [ceil(aT +1), ).

Theorem 2.2 from [21] now implies the existence of a unique fixed point, which is the unique solu-
tion of (4).

Corollary 2. Letthe conditions F e C'([0,0)xR), feCl([O,oo)xR4), ¢eC1(R) and
v € C(R) be satisfied, let the function f'satisfy the Lipschitz condition with constant L with respect to
the three last variables, and let 7' < min{l, (3L max{l, a_l})_l}. Then there exists a unique solution of
Equation (4) in the class C!([0, T]x R)).

Classical solution. We have therefore built a unique classical solution #® of (1), (2) on [0,T]xR
provided F e C'([0, 0)xR), fe C'([0, ) x ]R4), be Cz(]R), Y e c! (R), fis Lipschitz continuous
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with constant L with respect to the three last variables, and 7' = min{l, (3L max{l, a’! })_1} /2. Now we
can extend the solution to the time intervals [nT, (n+1)T], ne N, using matching conditions

u™ (T, x)=u"D (0T, x), 0,u™ (T, x)=0,u" (T, x), xeR. )
Differentiating equalities (5) with respect to x, we obtain

oxu™(nT,x)=0,u" VT, x), 02u™ (nT, x)=02u"D T, x),

(n) (n-1) ©

0, 0" (nT,x)=0,0u""""(nT,x), xeR.

We express the quantities o2ul )(nT, x), je{n-1,n} from Equation (1)
atzu(j)(nT,x)zF(nT,x)—azé,%u(j)(nT,x)+ e

+f(t,x,u(j)(nT, x),Gtu(j)(nT,x),Gxu(j)(nT,x)), xeR.

By virtue of (5) and (6) and the continuity of the functions f'and F in expression (7), the right-hand
sides are equal for j=n—1 and j=n, then the left-hand sides are also equal. Conditions (5)—(7) mean
that the function

L () = u" V@, x), (t,x)e[(n-1)T,nT]xR,
’ u™(t,x), (t,x)e[nT,(n+)T]xR,

belongs to the class c? ([((n—=DT, (n+1)T1xR) and satisfies Equation (1) onthe set [(n — 1T, (n + )T ]x R.
We note that another choice of matching conditions (5) will cause at least one of the functions u ™" or
o™ to be discontinuous, which will entail u "™ ¢ C*([(n-1)T, (n+ DT]x R).

Similarly, we conclude that the function

u@(t, x)=u"(t, x), (t,x) e[nT, (n+ DT]x R,

belongs to the class C?([0, %) xR) and satisfies Equation (1) on the set [0, 0)x R and the Cauchy con-
ditions (2) by construction. We state the result as the following assertion.

T heorem3. Let the conditions F e Cl([O, w)xR), fe Cl([O, oo)xR4), e CZ(R), and
yel "(R) be satisfied, and let the function f'satisfy the Lipschitz condition with constant L with respect
to the three last variables. Then the Cauchy problem (1), (2) has a unique solution in the class
C2([0, 0)x R).

Mild solution. If the given functions of the problem (1), (2) do not satisfy the smoothness conditions
specified in Theorem 3, then we can speak of mild, weak, and generalized solutions instead of the classi-
cal ones.

Definition 1. A function u e C'([0,0)xR) is called a mild solution of the problem (1), (2) if it
satisfies Equation (4).

Remark 1. Obviously, any classical solution of the problem (1), (2) is a mild solution of this prob-
lem too. In its turn, if a mild solution of problem (1), (2) belongs to the class C?([0,0)x R), then it will
be a classical solution of that problem.

We obtain the following result by repeating the arguments of the previous section.

Theoremd4. Let the conditions F € C([0,©0)xR), feC(]0, oo)xIR4), de CI(R) and y € C(R)
be satisfied, and let the function f satisfy the Lipschitz condition with constant L with respect to the three
last variables. Then the Cauchy problem (1), (2) has a unique mild solution.

Conclusions. In the present paper, we obtain sufficient conditions under which there exist a unique
classical solution and a unique mild solution of the Cauchy problem in a half-plane for a mildly quasilin-
ear wave equation. The dependence of the smoothness of the solution on the smoothness of the initial
functions is established.
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