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CLASSICAL SOLUTION OF THE INITIAL-VALUE PROBLEM  
FOR A ONE-DIMENSIONAL QUASILINEAR WAVE EQUATION

Abstract. For a one-dimensional mildly quasilinear wave equation given in the upper half-plane, we consider the Cauchy 
problem. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of some inte-
gro-differential equation. The solvability of this equation, as well the smoothness of its solution, is studied. For the problem in 
question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established. 
When given data is not enough smooth a mild solution is constructed.
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КЛАССИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ  
ДЛЯ ОДНОМЕРНОГО КВАЗИЛИНЕЙНОГО ВОЛНОВОГО УРАВНЕНИЯ

Аннотация. Для одномерного слабо квазилинейного волнового уравнения, заданного в верхней полуплоскости, 
рассматривается задача Коши. Решение строится в неявном аналитическом виде как решение некоторого интегро-
дифференциального уравнения. Проводится исследование разрешимости этого уравнения, а также гладкости его 
решения. Для рас сматриваемой задачи доказывается единственность решения и устанавливаются условия, при 
выполнении кото рых существует ее классическое решение. При недостаточной гладкости начальных данных 
строится слабое решение. 

Ключевые слова: нелинейное волновое уравнение, задача Коши, метод характеристик, принцип неподвижной 
точки, классическое решение
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Introduction. Continuous media are described mainly by nonlinear partial differential equations. 
The choice of linear or nonlinear equations for describing a medium depends on the role played by non-
linear effects and is determined by the specific physical situation. For example, when describing the 
propagation of laser pulses, it is necessary to take into account the dependence of the refractive index  
of the medium on the electromagnetic field intensity. 

The linearization of nonlinear equations of mathematical physics does not always lead to meaning-
ful results. It may turn out that the linearized equations apply to the physical process in question only for 
some finite time. Moreover, from the viewpoint of physics, it is often “essentially nonlinear” solutions, 
qualitatively different from the solutions of linear equations, that are extremely important for nonlinear 
equations of mathematical physics. These can be stationary solutions of the soliton type, localized in one 
or several dimensions, or solutions of the wave collapse type, which describe the spontaneous concentra-
tion of energy in small regions of space [1].

The solvability in some function spaces of the Cauchy problem and boundary value problems is es-
tablished for a wide class of weakly nonlinear hyperbolic equations of the form [2]

© Корзюк В. И., Рудько Я. В., 2023



 Доклады Национальной академии наук Беларуси. 2023. Т. 67, № 1. С. 14–19 15

 
2 .( ( , ( ),) ( , ) , ( ), ( ), ) 0,,, , n
t t tf u uu t t t t u t∂ ∆ = ∂ ∇ > ⊆− ∈Ωx x x x x x 

We note that various fixed-point theorems and the method of successive approximations are often 
used to find solutions to nonlinear equations. For example, Banach’s fixed point theorem was successful-
ly used to obtain a weak solution to the Cauchy problem for a mildly nonlinear wave equation with  
a nonlinearity of the form ( , , )tf u u u∇ ∂  [3]. In the paper [4], the method of successive approximations 
was used to construct a twice continuously differentiable solution of the Cauchy problem on a finite time 
interval for the nonlinear wave equation with a nonlinearity of the form (| |)G u u′  with a certain smooth-
ness and boundedness of the nonlinearity G, initial functions, and their derivatives; moreover, under 
additional conditions on the nonlinearity, the solution is determined in some cone. In the article [5], an 
auxiliary system with a viscosity parameter was used to build weak solutions for a quasilinear wave 
equation. A priori estimates and the method of characteristics were used to construct a strong general-
ized solution for a wave equation with a dissipative term (a nonlinearity of the form ( , , ) tug t x u ∂ ) [6].

We can see that the Cauchy problem is mostly studied with infinitely differentiable small [7–11] or 
slowly decaying data [12]. It is mainly due to the methods of study and the function spaces where the 
solution is sought.

In the present article, we use a fixed point principle to solve the Cauchy problem for a nonlinear in-
homogeneous hyperbolic equation of the second order. We also derive conditions under which the solu-
tion of the Cauchy problem will be classical. Moreover, we do not assume that the initial data of the 
problem are infinitely differentiable and/or small but take them sufficiently smooth, namely, from the 
classes C 2 and C 1. In the future, we will use the obtained results to study initial-boundary value problems.

Statement of the problem. In the domain (0, )∞ ×  of two independent variables 2 ,( , ) (0, )t x ∈ ∞ × ⊂   
consider the one-dimensional nonlinear equation

 
2 2 2( , ) ( , ) ( , , ( , ), ( , ), ( , )) ( ( , ) (0, ) ,, ),t tx xu t x a u t x f t x u t x u xt x u t x F t tx∂ − +∂ ∂ ∈ ∞=∂ ×   (1)

where (0, ),a∈ ∞  F is a function given on the set [0, ) ,∞ ×  f is a function given on the set 4.[0, )∞ ×  
Equation (1) is equipped with the initial condition

 ,(0, ) (0( ), ( ),, )tu x u xx x x= φ ∂ ψ ∈=    (2)

where ϕ and ψ are some real-valued functions defined on the real axis. 
It should be noted that Equation (1) can be reduced to a first-order semilinear hyperbolic system
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with respect to the unknown functions u, ,tq u= ∂  and ,xp u= ∂  and weak solutions of the original prob-
lem correspond to the so-called solutions in the broad sense for the equivalent system. Results on the 
existence and uniqueness of such solutions for general semilinear hyperbolic systems are well known 
and presented in the works [13; 14]. However, in these papers, generally speaking, only local solutions 
are established. They will be global classical provided they are bounded in any characteristic triangle 
and the given functions f, F, ϕ, ϕ′, and ψ are continuously differentiable. And the answer to the question 
“What conditions must be imposed on these functions to obtain global classical solutions?” is not avail-
able in [13; 14].

Some explicit conditions for the existence of a local classical solution to the problem (1)–(2) are giv-
en in the book [15] and article [16].

In contrast to many works devoted to the Cauchy problem, we will not assume the initial data of the prob-
lem to be infinitely differentiable and/or small but take them sufficiently smooth, namely, 1([0, ) ),F C∈ ∞ ×  

1 4([0, ) ),f C∈ ∞ ×  2 ),(Cφ∈   and 1 ).(Cψ∈ 
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Integro-differential equation. Introduce into consideration the operator K acting by the formula
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   (3)

In the closure [0, )∞ ×  of the domain (0, ) ,∞ × 	we	consider	 the	nonlinear	 integro-differential	
equation

 ( , ) [ ]( , ), ( , ) [0, ) .u t x K u t x t x= ∈ ∞ ×  	(4)

L e m m a 1. Let the conditions 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  2 ),(Cφ∈   and 
1( )Cψ∈   be satisfied. The function u is a continuous-differentiable solution of Equation (4) if it is  

a classical solution of the initial-value problem (1), (2).
P r o o f. See [17].
Lemma 1 can also be proved using the method of characteristics [18] or Green’s theorem.
L e m m a 2. Let the conditions 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  2 ),(Cφ∈   and 

1( )Cψ∈   be satisfied. The function u belongs to the class 2 [0, ) )(C ∞ ×  and satisfies Equation (1) 
and conditions (2) if it is a continuous-differentiable solution of Equation (4).

P r o o f. If the function u	 is	a	continuous-differentiable	solution	of	Equation	 (4),	 then,	by	virtue	 
of the smoothness conditions 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  2 ),(Cφ∈   and 1 ),(Cψ∈   
similarly	to	[19;	20],	we	conclude	that	 2 [0, ) ).(u C∈ ∞ × 	Substituting	the	representations	(4)	 into	(1)	
and (2), we verify that the function u	satisfies	Equation	(1)	in	 (0, )∞ ×  and conditions (2) in . The 
proof of the lemma is complete.

T h e o r e m 1. Let the conditions 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  2 ( )Cφ∈   and 
1( )Cψ∈   be satisfied. The function u belongs to the class 2 [0, ) )(C ∞ ×  and satisfies Equation (1) 

and conditions (2) if and only if it is a continuous-differentiable solution of Equation (4).
The p r o o f of the theorem follows from Lemmas 1 and 2.
For	definiteness,	we	define	the	topology	of	the	Fréchet	space	 ([0, ] )jC T ×  by a countable family  

of seminorms ( ) ,• j
mm C Ω=p  [ceil( 1), ),m aT∈ ∩ + ∞  where 

 {(0, ), (0, ), ( , ), ( , )}.Convm m m T aT m T aT m− +=Ω −

T h e o r e m 2. Let the conditions ([0, ) ),F C∈ ∞ ×  4([0, ) )),f C∈ ∞ ×  1( )Cφ∈   and 
( )Cψ∈   be satisfied, and let the function f satisfy the Lipschitz condition with constant L with respect 

to the three last variables, i. e., 1 2 1 23 3 2 2 31 1 3( ).( , , , , ) ( , , , , )f L zt x z z z f t x w w w w z w z w− ≤ − + − + −  
Then the operator 1 1( ) ( ),: m mK C CΩ Ω  acting by the formula (3), is L	 –	 Lipschitz, where 

2 13 max{ , } max{1, }.L T T a −= ×L
P	r	o	o	f.	Direct	verification.
C o r o l l a r y 1. Let the conditions ([0, ) ),F C∈ ∞ ×  4([0, ) ),f C∈ ∞ ×  1( )Cφ∈   and 

( )Cψ∈  	be	satisfied,	let	the	function	f satisfy the Lipschitz condition with constant L with respect to the 
three last variables, and let 1 1min{1, (3 max{1, }) }.LT a − −<  Then the operator 1([0, ]: )K TC ×   

1([0, ] ),TC ×  acting by the formula (3), is pm-contraction for any [ceil( 1), ).m aT∈ ∩ + ∞  
Theorem	2.2	from	[21]	now	implies	the	existence	of	a	unique	fixed	point,	which	is	the	unique	solu-

tion	of	(4).
C o r o l l a r y 2. Let the conditions 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  1( )Cφ∈   and 

( )Cψ∈  	be	satisfied,	let	the	function	f satisfy the Lipschitz condition with constant L with respect to 
the three last variables, and let 1 1min{1, (3 max{1, }) }.LT a − −<  Then there exists a unique solution of 
Equation	(4)	in	the	class	 1([0, ] )).C T ×

Classical solution. We have therefore built a unique classical solution u(0) of (1), (2) on [0, ]T ×  
provided 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  2 ),(Cφ∈   1 ),(Cψ∈   f is Lipschitz continuous 
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with constant L with respect to the three last variables, and 1 1min{1, (3 max{1, }) } / 2.T L a − −=  Now we 
can extend the solution to the time intervals [ , ( 1) ],nT n T+  ,n∈  using matching conditions

 
( ) ( 1) ( ) ( 1) .( , ) ( , ), ( , ) ( , ),n n n n

t tu nT x u nT x u nT x u nT x x− −=∂= ∂ ∈   (5)

Differentiating equalities (5) with respect to x, we obtain
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We express the quantities 2 ( ) ( , ),j
t u nT x∂  { 1, }j n n∈ −  from Equation (1)
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By virtue of (5) and (6) and the continuity of the functions f and F in expression (7), the right-hand 
sides are equal for 1j n= −  and ,j n=  then the left-hand sides are also equal. Conditions (5)–(7) mean 
that the function
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belongs to the class 2 ([( 1) , ( 1) ] )C n T n T− + ×  and satisfies Equation (1) on the set [( 1) , ( 1) ] .n T n T− + ×  
We note that another choice of matching conditions (5) will cause at least one of the functions ( 1, )n nu −  or 

( 1, )n n
tu −∂  to be discontinuous, which will entail ( 1, ) 2 ([( 1) , ( 1) ] ).n nu C n T n T− ∉ − + ×  

Similarly, we conclude that the function

 
( ) ( )( , ) ( , ), ( ,, [ , ( 1) ])nu nT nt x u t x t Tx∞ ∈ + ×= 

belongs to the class 2 ([0, ) )C ∞ ×  and satisfies Equation (1) on the set [0, )∞ ×  and the Cauchy con-
ditions (2) by construction. We state the result as the following assertion.

T h e o r e m 3. Let the conditions 1([0, ) ),F C∈ ∞ ×  1 4([0, ) ),f C∈ ∞ ×  2 ),(Cφ∈   and 
1( )Cψ∈   be satisfied, and let the function f satisfy the Lipschitz condition with constant L with respect 

to the three last variables. Then the Cauchy problem (1), (2) has a unique solution in the class 
2 ([0, ) ).C ∞ ×

Mild solution. If the given functions of the problem (1), (2) do not satisfy the smoothness conditions 
specified in Theorem 3, then we can speak of mild, weak, and generalized solutions instead of the classi-
cal ones.

D e f i n i t i o n 1. A function 1([0, ) )Cu∈ ∞ ×  is called a mild solution of the problem (1), (2) if it 
satisfies Equation (4).

R e m a r k 1. Obviously, any classical solution of the problem (1), (2) is a mild solution of this prob-
lem too. In its turn, if a mild solution of problem (1), (2) belongs to the class 2 ([0, ) ),C ∞ ×  then it will 
be a classical solution of that problem.

We obtain the following result by repeating the arguments of the previous section.
T h e o r e m 4. Let the conditions ([0, ) ),F C∈ ∞ ×  4([0, ) ),f C∈ ∞ ×  1( )Cφ∈   and ( )Cψ∈   

be satisfied, and let the function f satisfy the Lipschitz condition with constant L with respect to the three 
last variables. Then the Cauchy problem (1), (2) has a unique mild solution.

Conclusions. In the present paper, we obtain sufficient conditions under which there exist a unique 
classical solution and a unique mild solution of the Cauchy problem in a half-plane for a mildly quasilin-
ear wave equation. The dependence of the smoothness of the solution on the smoothness of the initial 
functions is established.

+



18	 Doklady	of	the	National	Academy	of	Sciences	of	Belarus,	2023,	vol.	67,	no.	1,	рр.	14–19

References

1. Prokhorov A. M. [et al.], eds. Encyclopedia of Physics: in 5 vol.	Moscow,	1992,	vol.	3.	642	p.	(in	Russian).
2. Vinogradov I. M. [et al.], eds. Encyclopedia of Mathematics: in 5 vol.	Moscow,	1982,	vol.	3.	592	p.	(in	Russian).
3. Evans L. C. Partial differential equations.	Providence,	R.	I.,	2010.	749	p.	https://doi.org/10.1090/gsm/019
4.	 Jörgens	 K.	 Das	 Anfangswertproblem	 in	 Großen	 für	 eine	 Klasse	 nichtlinearer	Wellengleichungen.	Mathematische 

Zeitschrift,	1961,	vol.	77,	no.	1,	pp.	295–308	(in	German).	https://doi.org/10.1007/bf01180181	
5.	Caetano	F.	On	the	existence	of	weak	solutions	to	the	Cauchy	problem	for	a	class	of	quasilinear	hyperbolic	equations	

with a source term. Revista Matemática Complutense,	2004,	vol	17,	no.	1,	pp.	147–167.	https://doi.org/10.5209/rev_rema.2004.
v17.n1.16794

6.	Jokhadze	O.	The	Cauchy	problem	for	one-dimensional	wave	equations	with	a	nonlinear	dissipative	 term.	Eurasian 
Mathematical Journal,	2014,	vol.	5,	no.	4,	pp.	92–112.

7.	Ta-tsien	(li	da-qian)	L.,	Da-qian	L.,	Yun-mei	C.	Initial	value	problems	for	nonlinear	wave	equations.	Communications 
in Partial Differential Equations,	1988,	vol.	13,	no.	4,	pp.	383–422.	https://doi.org/10.1080/03605308808820547

8.	Xiao	C.,	Guo	F.	On	the	global	existence	of	small	data	classical	solutions	to	a	semilinear	wave	equation	with	a	time-de-
pendent	 damping.	 Mathematical Methods in the Applied Sciences,	 2021,	 vol.	 44,	 no.	 18,	 pp.	 14593–14605.	 https://doi.
org/10.1002/mma.7728

9.	Hidano	K.,	Tsutaya	K.	Global	existence	and	asymptotic	behavior	of	solutions	for	nonlinear	wave	equations.	Indiana 
University Mathematics Journal,	1995,	vol.	44,	no.	4,	pp.	1273–1305.	https://doi.org/10.1512/iumj.1995.44.2028

10.	Tzvetkov	N.	Existence	of	global	solutions	to	nonlinear	massless	Dirac	system	and	wave	equations	with	small	data.	
Tsukuba Journal of Mathematics,	1998,	vol.	22,	no.	1,	pp.	198–211.	https://doi.org/10.21099/tkbjm/1496163480

11.	Li	Y.	C.	Classical	solutions	to	fully	nonlinear	wave	equations	with	dissipation	terms.	Chinese Annals of Mathematics, 
1996,	vol.	17A,	pp.	451–466.

12.	Ikeda	M.,	Inui	T.,	Wakasugi	Y.	The	Cauchy	problem	for	the	nonlinear	damped	wave	equation	with	slowly	decaying	
data. Nonlinear Differential Equations and Applications NoDEA,	 2017,	 vol.	 24,	 no.	 2,	 art.	 10,	 pp.	 451–466.	 https://doi.
org/10.1007/s00030-017-0434-1

13.	Friedrichs	K.	O.	Nonlinear	hyperbolic	differential	equations	for	functions	of	two	independent	variables.	American 
Journal of Mathematics,	1948,	vol.	70,	no.	3,	pp.	555–589.	https://doi.org/10.2307/2372200

14.	Rozhdestvenskii	B.	L.,	Yanenko	N.	N.	Systems of quasilinear equations and their applications to gas dynamics. Prov-
idence,	R.	I.,	1983.	676	p.

15.	Li	T.,	Zhou	Y.	Nonlinear Wave Equations.	Berlin,	Heidelberg,	2017.	407	p.	https://doi.org/10.1007/978-3-662-55725-9
16.	Havlová	J.	Periodic	solutions	of	a	nonlinear	 telegraph	equation.	Časopis pro pěstování matematiky,	1965,	vol.	90,	

no.	3,	pp.	273–289.	https://doi.org/10.21136/cpm.1965.108760
17.	Korzyuk	V.	I.,	Rudzko	J.	V.	Classical	solution	of	the	initial-value	problem	for	a	one-dimensional	quasilinear	wave	

equation.	XX Mezhdunarodnaya nauchnaya konferentsiya po differentsial’nym uravneniyam (Eryuginskie chteniya–2022): 
Materialy Mezhdunarodnoi nauchnoi konferentsii, Novopolotsk, 31 maya – 03 iyunya 2022 g. Chast’ 2	 [XX	International	
Scientific	Conference	on	Differential	Equations	(Erugin	Readings–2022):	Proceedings	of	the	International	Scientific	Confer-
ence,	Novopolotsk,	May	31	–	June	03,	2022.	Part	2].	Novopolotsk,	2022,	pp.	38–39.

18.	Korzyuk	V.	I.,	Rudzko	J.	V.	Classical	solution	of	the	first	mixed	problem	for	the	telegraph	equation	with	a	nonlinear	
potential.	Differential Equations,	2022,	vol.	58,	no.	2,	pp.	175–186.	https://doi.org/10.1134/s0012266122020045

19.	Korzyuk	V.	I.,	Stolyarchuk	I.	I.	Classical	solution	of	the	first	mixed	problem	for	the	Klein–Gordon–Fock	equation	in	 
a	half-strip.	Differential Equations,	2014,	vol.	50,	no.	8,	pp.	1098–1111.	https://doi.org/10.1134/s0012266114080084

20.	Korzyuk	V.	I.,	Stolyarchuk	I.	I.	Classical	solution	of	the	first	mixed	problem	for	second-order	hyperbolic	equation	in	
curvilinear	half-strip	with	variable	coefficients.	Differential Equations,	2017,	vol.	53,	no.	1,	pp.	74–85.	https://doi.org/10.1134/
s0012266117010074

21.	Cain	G.	L.,	Jr.,	Nashed	M.	Z.	Fixed	points	and	stability	for	a	sum	of	two	operators	in	locally	convex	spaces.	Pacific 
Journal of Mathematics,	1971,	vol.	39,	no.	3,	pp.	581–592.	https://doi.org/10.2140/pjm.1971.39.581

Acknowledgements.	The	article	was	published	with	the	
financial	support	of	the	Ministry	of	Science	and	Higher	Edu-
cation	of	 the	Russian	Federation	within	 the	program	of	 the	
Moscow	Center	 of	 Fundamental	 and	Applied	Mathematics	
under	the	agreement	No.	075-15-2022-284.

Благодарности.	Работа	проведена	при	финансовой	
поддержке	Министерства	науки	и	высшего	образования		
Рос	сий	ской	Федерации	в	рамках	реализации	программы	
Мо	сков	ского	 центра	 фундаментальной	 и	 прикладной	
мате	матики	(соглашение	№	075-15-2022-284).



 Доклады Национальной академии наук Беларуси. 2023. Т. 67, № 1. С. 14–19 19

Information about the authors

Korzyuk Viktor I. – Academician, D. Sc. (Physics and 
Mathematics), Professor. Institute of Mathematics of the Na-
tional Academy of Sciences of Belarus (11, Surganov Str., 
220072, Minsk, Republic of Belarus). E-mail: korzyuk@ 
bsu.by.

Rudzko Jan V. – Postgraduate Student. Institute of Ma-
the matics of the National Academy of Sciences of Belarus 
(11, Surganov Str., 220072, Minsk, Republic of Belarus). 
E-mail: janycz@yahoo.com. ORCID: 0000-0002-1482-9106.

Информация об авторах

Корзюк Виктор Иванович – академик, д-р физ.-мат. 
наук, профессор. Институт математики НАН Беларуси 
(ул. Сурганова, 11, 220072, Минск, Республика Бела-
русь). E-mail: korzyuk@bsu.by.

Рудько Ян Вячеславович – аспирант. Институт мате-
матики НАН Беларуси (ул. Сурганова, 11, 220072, Минск, 
Республика Беларусь). E-mail: janycz@yahoo.com. ORCID: 
0000-0002-1482-9106.


