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Abstract. Let X be a class of groups. Suppose that with each group G € X we associate some system of its subgroups
1(G). Then tis said to be a subgroup functor on X if the following conditions are hold: (1) G € ©(G) for each group G € X;
(2) for any epimorphism ¢: 4 — B, where 4,Be X, and for any groups H € 1(4) and T e t(B) we have H® e t(B) and
T 0! € 1(A). In this paper, were considered some applications of such subgroup functors in the theory of finite groups in
which generalized normality for subgroups is transitive.

Keywords: finite group, modular subgroup, c-subnormal subgroup, c-soluble group, subgroup functor

For citation. Safonova I. N., Skiba A. N. On some classes of finite o-soluble Po7-groups. Doklady Natsional’noi aka-
demii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 6, pp. 460—464. https://doi.
org/10.29235/1561-8323-2023-67-6-460-464

U. H. Cadonoral, A. H. Cxuoda?

!Benopycckuii 2cocydapcmeennsiii ynusepcumem, Munck, Pecnybnuxa Beaapyce
2Fomenvckuii zocyoapemeennoiii ynugepcumem um. Opanyucka Cropunsl, I'omens, Pecnybnuxa benrapyce

O HEKOTOPBIX KJIACCAX KOHEYHBbBIX 6-PASPEILIUMBIX Pe7T-I'PYIII
(Ilpeocmasneno akademuxom B. U. Anuesckum)

Annotanus. [Tycte X — kmacc rpynm. [Ipeamonoxum, uto kax ol rpynne G € X conmocTaBlieHa HEKOTOpasi CUCTEMa
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Introduction. Throughout this paper, all groups are finite and G always denotes a finite group; £(G)
is the lattice of all subgroups of G. Moreover, 6 ={c; |i €[} is some partition of the set of all primes
[P and if G is a o,-group for some i, then G is called o-primary [1]; G is said to be [2]: o-soluble if every
chief factor of G is 6-primary; c-nilpotent if G is the direct product of 6-primary groups.

If n is an integer, the symbol n(n) denotes the set of all primes dividing »; as usual, ©(G)=n(]G)),
the set of all primes dividing the order of G; o(n) ={c;|c; N"n(n) =} and o(G)=c(|G|) [2].

Let X be a class of groups. Suppose that with each group G € X we associate some system of its
subgroups t©(G). Then we say that t is a subgroup functor (in the sense of Skiba [3]) on X if the follow-
ing conditions hold: (1) G € 1(G) for each group G € X; (2) for any epimorphisnll ¢:A—> B, where
A,B e X, and for any groups H e t(A) and T e t(B) we have H® et(B) and T® e1(A).

The subgroup functors of this kind have found numerous applications in the formation theory and
in the Schunk classes theory (see, for example, the books [3—6]).

© Cadonosa 1. H., Ckuba A. H., 2023



Joxmaast HanmonaneHoM akagemun Hayk bemapycu. 2023. T. 67, Ne 6. C. 460-464 461

In this paper, we discuss some applications of the subgroup functors of this kind in the theory
of generalized 7-groups.

A subgroup 4 of G is said to be: quasinormal or permutable in G if A permutes with every subgroup
H of G, that is, AH = HA; Sylow permutable or S-permutable if A permutes with all Sylow subgroups of G.

A group G is said to be a T-group if normality is a transitive relaion on G, that is, if H is a normal
subgroup of K and K is a normal subgroup of G, then H is a normal subgroup of G. In other words,
the group G is a 7-group if and only if every subnormal subgroup of G is normal. The description
of T-groups was first obtained by Gaschiitz [7] for the soluble case, and by Robinson in [8], for the general
case. The works [7; 8] aroused great interest in the further study of 7-groups and generalized 7-groups
(PT-groups, i. e. groups in which quasinormality is transitive; PS7-groups, i. e. groups, in which Sylow
permutability is transitive, M7-groups, i. e. groups, in which modularity is transitive and etc.).

In the last 10 years, considerable attention has been paid to the study of generalized 7-groups in the
theory of o-properties of a group. Recall that a 6-property of a group is understood to be any of its prop-
erties that depends on ¢ and which does not imply any restrictions on c.

A subgroup 4 of G is said to be: (i) o-subnormal in G if there is a subgroup chain 4= A4y <
<4 <---< 4, = Gsuch that either 4; | < A4; or A4;/(A4;1) 4 1s o-primary for all i=1,...,n; (ii) c-sem-
inormal in G (J. C. Beidleman) if x € Ng(A) for all xe G such that o(| x|) " o(A)=; (iil) o-permu-
table in G if G is o-full, that is, G has a Hall c,-subgroup for every o; € 5(G) and 4 permutes with
all such Hall subgroups of G.

In fact, the appearance of the theory of o-properties of a group was mainly connected with attempts
to solve the following difficult problem.

Question (See[l]). What is the structure of a PoT-group, that is, a o-full group G in which
o-permutability is transitive on G, that is, if H is a o-permutable subgroup of K and K is a 6-permutable
subgroup of G, then H is a o-permutable subgroup of G?

This problem turned out to be difficult even in the o-soluble case: its solution in this case required
the development of many aspects of the theory of c-properties of a group. The theory of c-soluble
PoT-groups was mainly developed in the papers of J. Beidleman, A. Ballester-Bolinches, I. N. Safonova,
A. N. Skiba, M. K. Pedraza-Aguilera, W. Pérez-Calabuing, Ch. Zhang, W. Guo, A-Ming Liu, and a num-
ber of other authors, and the following theorem (which, in fact, is the main result of papers [1; 9]) is the
key result in this direction.

Theorem 1 [9]. If Gis a c-soluble PoT-group and D = G™5, then the Jfollowing conditions
hold: ) G=DxM, where D is an abelian Hall subgroup of G of odd order, M is o-nilpotent and every
element of G induces a power automorphism in D; (ii) Og;(D) has a normal complement in a Hall
c-subgroup of G for all i. Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G,
then G is a 6-soluble PcT-group.

In this theorem, G™'c is the o-nilpotent residual of G, that is, the intersection of all normal sub-
groups N of G with c-nilpotent quotient G / N.

In this paper, we show that Theorem 1 can be substantially strengthened on the basis of the theory
of subgroup functors. First of all, we say that a group G € X is t-saturated if for every its subgroup 4
we have 4 e€1(G); if Ae1(G), then we say that 4 is a t-subgroup of G. In the case when X is the class
of all groups, we will simply say “subgroup functor” instead of “subgroup functor on X”.

Definition 1. Let X be the class of all 6-soluble groups. Then we say that a subgroup functor
T on X is o-special if for every group G € X the following three conditions hold:

(*) each of the o-subnormal t-subgroups of G is o-permutable in G;

(**) (4, B) € ©(G) for any two c-subnormal t-subgroups 4, B of G;

***)if G=DxM is a Pol-group, where D = G™o, and 4 is a o-primary o-subnormal subgroup
of G such that 4 e 1(M), then 4e1(G).

Definition 2. Let X be the class of all -soluble groups. Then we say that a subgroup functor
T on X is closed if for every group G € X the following three conditions hold:

(D) if ASEZLG and 4€1(G), then 4 e 1(E);

(I) if G=Dx L, where D is a Hall subgroup of G and A4 € 1(D), then 4 € 1(G);

(IIT) A4 € ©(G) for every normal subgroup 4 of G.
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The meaning of the concepts introduced above is connected, first of all, with the following two
theorems.

Theorem 2 [10]. Suppose that G is a 6-soluble group with D = G™5, and let T be a o-special
subgroup fuctor on the class of all c-soluble groups X. If every c-subnormal subgroup of G is a t-sub-
group of G, then G is a PcT-group and the following conditions hold: (i) G = Dx M , where D is an abelian
Hall subgroup of G of odd order, M is a c-nilpotent t-saturated group and every element of G induces
a power automorphism in D; (ii) Os; (D) has a normal complement in a Hall c-subgroup of G for
all i. Conversely, if Conditions (1) and (i1) hold for some subgroups D and M of G, then every c-subnormal
subgroup of G belongs to t1(G).

Theorem 3 [10]. Let G be a c-soluble group and let © be a c-special closed subgroup fuctor
on the class of all -soluble groups X. Then every o-subnormal subgroup of G is a T-subgroup of G if and
only if G is a PoT-group and every Hall 6-subgroup of G is t-saturated for all i€ 1.

Applications of Theorems 2 and 3 are based on the following our results.

Theorem 4. Let X be the class of all 6-soluble groups and 1(X) be the set of all 6-permutable
subgroups of X for each group X € X. Then t is a subgroup functor on X and such a functor t is both
o-special and closed.

Theorem 5. Let X be the class of all 6-soluble groups and ©(X) be the set of all modular (re-
spectively, normal) subgroups of X for each group X € X. Then t is a subgroup functor on X and such
a functor t is both o-special and closed.

Theorem 6. Let X be the class of all o-soluble groups and 1(X) be the set of all o-hypercentrally
embedded subgroups of X for each group X € X. Then t is a subgroup functor on X and such a functor
T is both o-special and closed.

Proofs of Theorems 4, 5 and 6. Using simple inductive reasoning, we can prove the following
lemmas.

Lemma 1. Let N <A4,B be subgroups of a 6-soluble group G, where N is normal in G. Suppose
that {cy,...,0,} =o(G) and H. is a Hall 6-subgroup of G for all i=1,...,t.

() If AH=H}A forall i=1,...,t and all x € G, then A is c-permutable in G.

(2) A/ N is o-permutable in G/ N if and only if A is o-permutable in G.

(3) If A is o-permutable in G and A< B, then A is 6-permutable in B.

Lemma 2. Suppose that G=DxM is a g-soluble PcT-group, where D = G™o, is a Hall abeli-
an subgroup of G. If A is a o-primary c-subnormal subgroup of G and A<M, then D < Cg(A).

Lemma 3. Let A be a o-hypercentrally embedded subgroup of G. If G has a Hall 6 -subgroup
H for some i, then AH = HA.

Lemma 4. The set of all 6-hypercentrally embedded subgroups of G forms a sublattice of the
lattice L(G).

Lemma 5. Let A, B and H be subgroups of G. If AH= HA and BH = HB, then (A,BYH = H(A,B).

Proof of Theorem 4. In view of Lemma 1 (2), T is a subgroup functor (in the above sence) on X.
Let G € X. Clearly, Conditions (*) and (***) hold for G. Moreover, in view of Lemma 5, Condition (**)
also holds for G. Hence the functor 7 is 6-special.

Now we show that the functor 7 is closed. Condition (I) holds for G by Lemma 1 (3) . Condition (III)
also holds for G since every c-soluble group is o-full by [2, Theorem B].

Now let G=DxM, where D is a Hall subgroup of G, and let L be a c-permutable subgroup
of D. Let H be a Hall 6,-subgroup of G for some ie /. Then H =(H ND)x(HNM), where HND
is a Hall o,-subgroup of D. Therefore L(H nD)=(H nD)L and also we have [L,M]=1. Hence
LH=LHND)YHNM)=(HND)YHNM)L. Therefore L is o-permutable in G, so Condition (II)
holds for G. Hence the functor 7 is closed. The theorem is proved.

Recall that a subgroup M of G is said to be modular in G if M is a modular element (in the sense
of Kurosh [11, p. 43]) of the lattice £(G), thatis, (i) (X,M NZ)=(X,M)"Z forall X <G,Z <G such
that X <Z, and (it) (M, Y NZ)=(M,Y)"Z forall Y<G,Z<G suchthat M <Z.

Proof of Theorem 5. In view of [11, p. 201, Properties (3), (4)], T is a subgroup functor (in the
above sence) on X.
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We show that the functor t is o-special. Let Ge X. If 4 is a o-subnormal modular subgroup
of G, then 4 is o-permutable in G by [12, Theorem C], so Condition (*) holds for G. Condition (**) holds
for G by [11, p. 201, Property (5)]. Finally, suppose that G=DxM is a PoI-group, where D = G,
and let 4 be a o-primary c-subnormal subgroup of G such that 4 is a modular subgroup of M. We show
that in this case 4 is a modular subgroup of G. In view of [11, Lemma 5.1.13], it is enough to show that
A is modular in (x, 4) for any element x of G of prime power order p”.

If xeD, it is true by Lemma 2. Now assume that xe D and so xe M? for some d e D since
M is a Hall subgroup of G. But 4 is modular in M and so 4 is modular in M? since 4 = 4 by Lemma 2.
Therefore 4 is modular in {x, 4). Hence Condition (***) holds for G, so 7 is a 6-special subgroup func-
tor on X.

Now we show that the functor 1 is closed. Indeed, Conditions (I) and (III), clearly, hold for G, and
if G=DxM, where D is a Hall subgroup of G and L € t©(D), then, arguing as above, we can show that
L is a modular subgroup of G and hence Condition (II) also holds for G.

Finally, if ©(X) is the set of all normal subgroups of X for each group X € X, then, arguin as above,
we can show that t is a subgroup functor on X and such a functor t is both c-special and closed. The
theorem is proved.

We say, following [9], that a subgroup A of G is c-hypercentrally embedded in G if either A< G
or every chief factor H/ K of G between 4, and A is o-central in G [1], thatis, (H / K)x (G / Cq(H / K))
is o-primary.

Proof of Theorem 6. It is not difficult to show that 1 is a subgroup functor (in the above sence) on X.

Now we show that T is a o-special subgroup functor on X. Let Ge X. In view of Lemma 3, Con-
dition (*) holds for G. On the other hand, since the set of all o-hypercentrally embedded subgroups
of G forms a sublattice of the lattice £(G) by Lemma 4, Condition (**) also holds for G.

Finally, let G=DxM be a PoT-group, where D=G", and 4 is a o-subnormal G-subgroup
of G, i eI, such that 4 is a o-hypercentrally embedded subgroup of M. Then D <Cg(4) by Lemma 2,
soAd;=A4,,,=A,, and AC = 4PM = yM <0q;(G)NM. 1t follows that 4 is normal in G in the case
when 4 is normal in M. Moreover, if H / K is a chief factor of G between 4, = 4,, and A% = AM then
H /K is a chief factor of M and Cs(H / K)=DC\y;(H / K) since [D, AG] =1 by Lemma 2, so

G/Cg(H/K)=DM /DCy(H/K)~M/(M~DCy (H/K))=
=M /Cy(H/K)YMAD)=M/Cy(H/K)

is a o-group. Hence H / K is o-central in G, so A4 is o-hypercentrally embedded in G. Therefore Condi-
tion (***) holds for G, so 1 is a c-special subgroup functor on X.

Similarly, it can be proved that 1 is a closed subgroup functor on X. The theorem is proved.

Some applications. Theorems 4, 5 and 6 allow us to generalize many well-known results. In this
section, we present some of these results. First of all note that from Theorems 2 and 4 we get in the case
o ={{2},{3},{5},...} the follwing classical result.

Corollaryl [7]. 4 group Gis a soluble T-group if and only if the following conditions are satis-

fied: (i) the nilpotent residual D of G is an abelian Hall subgroup of odd order; (ii) G acts by conjugation
on D as a group power automorphisms, (iii) G / D is a Dedekind group.

We say that G is a T_-group if every c-subnormal subgroup of G is normal.

From Theorems 2 and 5 we get the follwing known results.

Corollary 2 [13]. 4 o-soluble group G with D=G™° isa T -group if and only if the follow-
ing conditions hold: (i) G=DxM, where D is an abelian Hall subgroup of G of odd order, and M is
a Dedekind group; (ii) every element of G induces a power automorphism in D; (iii) O, (D) has a nor-
mal complement in a Hall 6-subgroup of G for all i.

Recall that an Iwasawa group is a group in which every subgroup is quasinormal.

Corollary 3 [14]. 4 group G is a soluble PT-group if and only if the following conditions are
satisfied: (i) the nilpotent residual D of G is an abelian Hall subgroup of odd order; (ii) G acts by conju-
gation on D as a group power automorphisms; (iii) G / D is an Iwasawa group.
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Corollary 4 [12]. Let D=G™°. Then G is a c-soluble in which every c-subnormal subgroup
is modular if and only if the following conditions hold: (i) G=DxM, where D is an abelian Hall sub-
group of G of odd order, L is o-nilpotent and the lattice L(M) is modular; (ii) every element of G induces
a power automorphism in D; (iii) Og,;(D) has a normal complement in a Hall 6-subgroup of G for all i.

Corollary 5 [9]. 4 group G is a c-soluble PcT-group if and only if every c-subnormal sub-

group of G is 6-hypercentrally embedded in G.

From Theorems 3 and 5 we get the follwing known results.
Corollary 6 [15]. A c-soluble group G is a T -group if and only if G is a soluble T-group and
the Hall 6-subgroups of G are Dedekind for all i€ 1.
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