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Abstract. Let X  be a class of groups. Suppose that with each group G∈X  we associate some system of its subgroups 
( ).Gτ  Then τ is said to be a subgroup functor on X  if the following conditions are hold: (1) ( )G G∈τ  for each group ;G∈X  

(2) for any epimorphism : ,A Bϕ →  where , ,A B∈X  and for any groups ( )H A∈τ  and ( )T B∈τ  we have ( )H Bϕ ∈τ  and 
1

( ).T A
−ϕ ∈τ  In this paper, were considered some applications of such subgroup functors in the theory of finite groups in 

which generalized normality for subgroups is transitive.
Keywords: finite group, modular subgroup, σ-subnormal subgroup, σ-soluble group, subgroup functor
For citation. Safonova I. N., Skiba A. N. On some classes of finite σ-soluble PσT-groups. Doklady Natsional’noi aka-

demii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 6, pp. 460–464. https://doi.
org/10.29235/1561-8323-2023-67-6-460-464

И. Н. Сафонова1, А. Н. Скиба2

1Белорусский государственный университет, Минск, Республика Беларусь 
2Гомельский государственный университет им. Франциска Скорины, Гомель, Республика Беларусь

О НЕКОТОРЫХ КЛАССАХ КОНЕЧНЫХ σ-РАЗРЕШИМЫХ PσT-ГРУПП
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Аннотация. Пусть X  – класс групп. Предположим, что каждой группе G∈X  сопоставлена некоторая система 
ее подгрупп ( ).Gτ  Тогда говорят, что τ – подгрупповой функтор на ,X  если выполняются следующие условия: 
(1) ( )G G∈τ  для каждой группы ;G∈X  (2) для любого эпиморфизма : ,A Bϕ →  где , ,A B∈X  и для любых групп 

( )H A∈τ  и ( )T B∈τ  имеем ( )H Bϕ ∈τ  и 
1

( ).T A
−ϕ ∈τ  Рассмотрены некоторые приложения таких подгрупповых 

функторов в теории конечных групп, у которых транзитивна обобщенная нормальность для подгрупп.
Ключевые слова: конечная группа, модулярная подгруппа, σ-субнормальная подгруппа, σ-разрешимая группа, 

подгрупповой функтор
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Introduction. Throughout this paper, all groups are finite and G always denotes a finite group; (G) 
is the lattice of all subgroups of G. Moreover, = { | }i i Iσ σ ∈  is some partition of the set of all primes 
 and if G is a σi-group for some i, then G is called σ-primary [1]; G is said to be [2]: σ-soluble if every 
chief factor of G is σ-primary; σ-nilpotent if G is the direct product of σ-primary groups.

If n is an integer, the symbol π(n) denotes the set of all primes dividing n; as usual, ( ) = (| |),G Gπ π  
the set of all primes dividing the order of G; ( ) = { | ( ) }i in nσ σ σ ∩π ≠∅  and ( ) = (| |)G Gσ σ  [2].

Let X be a class of groups. Suppose that with each group G∈X  we associate some system of its 
subgroups τ(G). Then we say that τ is a subgroup functor (in the sense of Skiba [3]) on X if the follow-
ing conditions hold: (1) ( )G G∈τ  for each group ;G∈X  (2) for any epimorphism : ,A Bϕ →  where 

, ,A B∈X  and for any groups ( )H A∈τ  and ( )T B∈τ  we have ( )H Bϕ ∈τ  and 
1

( ).T A
−ϕ ∈τ

The subgroup functors of this kind have found numerous applications in the formation theory and  
in the Schunk classes theory (see, for example, the books [3–6]).
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In this paper, we discuss some applications of the subgroup functors of this kind in the theory  
of generalized T-groups.

A subgroup A of G is said to be: quasinormal or permutable in G if A permutes with every subgroup 
H of G, that is, AH = HA; Sylow permutable or S-permutable if A permutes with all Sylow subgroups of G. 

A group G is said to be a T-group if normality is a transitive relaion on G, that is, if H is a normal 
subgroup of K and K is a normal subgroup of G, then H is a normal subgroup of G. In other words, 
the group G is a T-group if and only if every subnormal subgroup of G is normal. The description  
of T-groups was first obtained by Gaschütz [7] for the soluble case, and by Robinson in [8], for the general 
case. The works [7; 8] aroused great interest in the further study of T-groups and generalized T-groups 
(PT-groups, i. e. groups in which quasinormality is transitive; PST-groups, i. e. groups, in which Sylow 
permutability is transitive, MT-groups, i. e. groups, in which modularity is transitive and etc.).

In the last 10 years, considerable attention has been paid to the study of generalized T-groups in the 
theory of σ-properties of a group. Recall that a σ-property of a group is understood to be any of its prop-
erties that depends on σ and which does not imply any restrictions on σ. 

A subgroup A of G is said to be: (i) σ-subnormal in G if there is a subgroup chain 0 1= =nA A A A G≤ ≤ ≤ 
0 1= =nA A A A G≤ ≤ ≤ such that either 1i iA A−   or 1/ ( )i i AiA A −  is σ-primary for all = 1, , ;i n  (ii) σ-sem-

inormal in G (J. C. Beidleman) if ( )Gx N A∈  for all x G∈  such that (| |) ( ) = ;x Aσ ∩σ ∅  (iii) σ-permu- 
table in G if G is σ-full, that is, G has a Hall σi-subgroup for every ( )i Gσ ∈σ  and A permutes with  
all such Hall subgroups of G. 

In fact, the appearance of the theory of σ-properties of a group was mainly connected with attempts 
to solve the following difficult problem.

Q u e s t i o n  (See [1]). What is the structure of a PσT-group, that is, a σ-full group G in which 
σ-permutability is transitive on G, that is, if H is a σ-permutable subgroup of K and K is a σ-permutable 
subgroup of G, then H is a σ-permutable subgroup of G? 

This problem turned out to be difficult even in the σ-soluble case: its solution in this case required 
the development of many aspects of the theory of σ-properties of a group. The theory of σ-soluble  
PσT-groups was mainly developed in the papers of J. Beidleman, A. Ballester-Bolinches, I. N. Safonova, 
A. N. Skibа, M. K. Pedraza-Aguilera, W. Pérez-Calabuing, Ch. Zhang, W. Guo, A-Ming Liu, and a num-
ber of other authors, and the following theorem (which, in fact, is the main result of papers [1; 9]) is the 
key result in this direction.

T h e o r e m  1  [9].  If G is a σ-soluble PσT-group and = ,D G σN  then the following conditions 
hold: (i) = ,G D M  where D is an abelian Hall subgroup of G of odd order, M is σ-nilpotent and every 
element of G induces a power automorphism in D; (ii) ( )iO Dσ  has a normal complement in a Hall 
σi-subgroup of G for all i. Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G, 
then G is a σ-soluble PσT-group.

In this theorem, G σN  is the σ-nilpotent residual of G, that is, the intersection of all normal sub-
groups N of G with σ-nilpotent quotient G / N. 

In this paper, we show that Theorem 1 can be substantially strengthened on the basis of the theory 
of subgroup functors. First of all, we say that a group G∈X  is τ-saturated if for every its subgroup A 
we have ( );A G∈τ  if ( ),A G∈τ  then we say that A is a τ-subgroup of G. In the case when X is the class  
of all groups, we will simply say “subgroup functor” instead of “subgroup functor on X”.

D e f i n i t i o n 1.  Let X be the class of all σ-soluble groups. Then we say that a subgroup functor  
τ on X is σ-special if for every group G∈X  the following three conditions hold:

(*) each of the σ-subnormal τ-subgroups of G is σ-permutable in G; 
(**) , ( )A B G〈 〉∈τ  for any two σ-subnormal τ-subgroups A, B of G; 
(***) if =G D M  is a PσT-group, where = ,D G σN  and A is a σ-primary σ-subnormal subgroup 

of G such that ( ),A M∈τ  then ( ).A G∈τ
D e f i n i t i o n  2.  Let X be the class of all σ-soluble groups. Then we say that a subgroup functor  

τ on X is closed if for every group G∈X  the following three conditions hold:
(I) if A E G≤ ≤  and ( ),A G∈τ  then ( );A E∈τ
(II) if = ,G D L×  where D is a Hall subgroup of G and ( ),A D∈τ  then ( );A G∈τ
(III) ( )A G∈τ  for every normal subgroup A of G. 
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The meaning of the concepts introduced above is connected, first of all, with the following two  
theorems.

T h e o r e m  2  [10].  Suppose that G is a σ-soluble group with = ,D G σN  and let τ be a σ-special 
subgroup fuctor on the class of all σ-soluble groups X. If every σ-subnormal subgroup of G is a τ-sub-
group of G, then G is a PσT-group and the following conditions hold: (i) = ,G D M  where D is an abelian 
Hall subgroup of G of odd order, M is a σ-nilpotent τ-saturated group and every element of G induces 
a power automorphism in D; (ii) ( )iO Dσ  has a normal complement in a Hall σi-subgroup of G for  
all i. Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G, then every σ-subnormal 
subgroup of G belongs to ( ).Gτ

T h e o r e m  3  [10].  Let G be a σ-soluble group and let τ be a σ-special closed subgroup fuctor  
on the class of all σ-soluble groups X. Then every σ-subnormal subgroup of G is a τ-subgroup of G if and 
only if G is a PσT-group and every Hall σi-subgroup of G is τ-saturated for all .i I∈

Applications of Theorems 2 and 3 are based on the following our results.
T h e o r e m  4.  Let X be the class of all σ-soluble groups and τ(X) be the set of all σ-permutable 

subgroups of X for each group .X ∈X  Then τ is a subgroup functor on X and such a functor τ is both 
σ-special and closed.

T h e o r e m  5.  Let X be the class of all σ-soluble groups and τ(X) be the set of all modular (re-
spectively, normal) subgroups of X for each group .X ∈X  Then τ is a subgroup functor on X and such  
a functor τ is both σ-special and closed. 

T h e o r e m  6.  Let X be the class of all σ-soluble groups and τ(X) be the set of all σ-hypercentrally 
embedded subgroups of X for each group .X ∈X  Then τ is a subgroup functor on X and such a functor  
τ is both σ-special and closed. 

P r o o f s  of Theorems 4, 5 and 6. Using simple inductive reasoning, we can prove the following 
lemmas.

L e m m a  1.  Let ,N A B≤  be subgroups of a σ-soluble group G, where N is normal in G. Suppose 
that 1{ , , } = ( )t Gσ σ σ   and Hi is a Hall σi-subgroup of G for all = 1, , .i t

(1) If  =x x
i iAH H A   for all = 1, ,i t  and all ,x G∈  then A is σ-permutable in G.

(2) A / N is σ-permutable in G / N if and only if A is σ-permutable in G.
(3) If A is σ-permutable in G and ,A B≤  then A is σ-permutable in B.
L e m m a  2.  Suppose that =G D M  is a σ-soluble PσT-group, where = ,D G σN  is a Hall abeli-

an subgroup of G. If A is a σ-primary σ-subnormal subgroup of G and ,A M≤  then ( ).GD C A≤
L e m m a  3.  Let A be a σ-hypercentrally embedded subgroup of G. If G has a Hall σi-subgroup  

H for some i, then AH = HA.
L e m m a  4.  The set of all σ-hypercentrally embedded subgroups of G forms a sublattice of the 

lattice (G).
L e m m a  5.  Let A, B and H be subgroups of G. If AH = HA and BH = HB, then , = , .A B H H A B〈 〉 〈 〉
P r o o f  of Theorem 4. In view of Lemma 1 (2), τ is a subgroup functor (in the above sence) on X. 

Let G∈X.   Clearly, Conditions (*) and (***) hold for G. Moreover, in view of Lemma 5, Condition (**) 
also holds for G. Hence the functor τ is σ-special.

Now we show that the functor τ is closed. Condition (I) holds for G by Lemma 1 (3) . Condition (III) 
also holds for G since every σ-soluble group is σ-full by [2, Theorem B].

Now let = ,G D M×  where D is a Hall subgroup of G, and let L be a σ-permutable subgroup  
of D. Let H be a Hall σi-subgroup of G for some .i I∈  Then = ( ) ( ),H H D H M∩ × ∩  where H D∩  
is a Hall σi-subgroup of D. Therefore ( ) = ( )L H D H D L∩ ∩  and also we have [ , ] = 1.L M  Hence 

= ( )( ) = ( )( ) .LH L H D H M H D H M L∩ ∩ ∩ ∩  Therefore L is σ-permutable in G, so Condition (II) 
holds for G. Hence the functor τ is closed. The theorem is proved.

Recall that a subgroup M of G is said to be modular in G if M is a modular element (in the sense  
of Kurosh [11, p. 43]) of the lattice (G), that is, (i) , = ,X M Z X M Z〈 ∩ 〉 〈 〉 ∩  for all ,X G Z G≤ ≤  such 
that ,X Z≤  and (ii) , = ,M Y Z M Y Z〈 ∩ 〉 〈 〉 ∩  for all ,Y G Z G≤ ≤  such that .M Z≤

P r o o f  of Theorem 5. In view of [11, p. 201, Properties (3), (4)], τ is a subgroup functor (in the 
above sence) on X.
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We show that the functor τ is σ-special. Let G∈X.  If A is a σ-subnormal modular subgroup  
of G, then A is σ-permutable in G by [12, Theorem C], so Condition (*) holds for G. Condition (**) holds 
for G by [11, p. 201, Property (5)]. Finally, suppose that =G D M  is a PσT-group, where = ,D G σN  
and let A be a σ-primary σ-subnormal subgroup of G such that A is a modular subgroup of M. We show 
that in this case A is a modular subgroup of G. In view of [11, Lemma 5.1.13], it is enough to show that  
A is modular in ,x A〈 〉  for any element x of G of prime power order pn.

If ,x D∈  it is true by Lemma 2. Now assume that x D∉  and so dx M∈  for some d D∈  since  
M is a Hall subgroup of G. But A is modular in M and so A is modular in Md since Ad = A by Lemma 2. 
Therefore A is modular in , .x A〈 〉  Hence Condition (***) holds for G, so τ is a σ-special subgroup func-
tor on X.

Now we show that the functor τ is closed. Indeed, Conditions (I) and (III), clearly, hold for G, and  
if = ,G D M×  where D is a Hall subgroup of G and ( ),L D∈τ  then, arguing as above, we can show that 
L is a modular subgroup of G and hence Condition (II) also holds for G.

Finally, if τ(X) is the set of all normal subgroups of X for each group ,X ∈X  then, arguin as above, 
we can show that τ is a subgroup functor on X and such a functor τ is both σ-special and closed. The 
theorem is proved.

We say, following [9], that a subgroup A of G is σ-hypercentrally embedded in G if either A G   
or every chief factor H / K of G between AG and AG is σ-central in G [1], that is, ( / ) ( / ( / ))GH K G C H K  
is σ-primary.

P r o o f  of Theorem 6. It is not difficult to show that τ is a subgroup functor (in the above sence) on X. 
Now we show that τ is a σ-special subgroup functor on X. Let G∈X.  In view of Lemma 3, Con-

dition (*) holds for G. On the other hand, since the set of all σ-hypercentrally embedded subgroups  
of G forms a sublattice of the lattice (G) by Lemma 4, Condition (**) also holds for G. 

Finally, let =G D M  be a PσT-group, where = ,D G σN  and A is a σ-subnormal σi-subgroup  
of G, ,i I∈  such that A is a σ-hypercentrally embedded subgroup of M. Then ( )GD C A≤  by Lemma 2, 
so AG = ADM = AM and = = ( ) .G DM M

iA A A O G Mσ≤ ∩  It follows that A is normal in G in the case 
when A is normal in M. Moreover, if H / K is a chief factor of G between AG = AM and AG = AM, then 
H / K is a chief factor of M and ( / ) = ( / )G MC H K DC H K  since [ , ] = 1GD A  by Lemma 2, so 

/ ( / ) = / ( / ) / ( ( / ))G M MG C H K DM DC H K M M DC H K∩ =

= / ( / )( ) = / ( / )M MM C H K M D M C H K∩

is a σi-group. Hence H / K is σ-central in G, so A is σ-hypercentrally embedded in G. Therefore Condi-
tion (***) holds for G, so τ is a σ-special subgroup functor on X.

Similarly, it can be proved that τ is a closed subgroup functor on X. The theorem is proved.
Some applications. Theorems 4, 5 and 6 allow us to generalize many well-known results. In this 

section, we present some of these results. First of all note that from Theorems 2 and 4 we get in the case 
= {{2},{3},{5}, }σ   the follwing classical result. 

C o r o l l a r y 1  [7].  A group G is a soluble T-group if and only if the following conditions are satis-
fied: (i) the nilpotent residual D of G is an abelian Hall subgroup of odd order; (ii) G acts by conjugation 
on D as a group power automorphisms; (iii) G / D is a Dedekind group.

We say that G is a Tσ-group if every σ-subnormal subgroup of G is normal.
From Theorems 2 and 5 we get the follwing known results.
C o r o l l a r y  2  [13].  A σ-soluble group G with =D G σN  is a Tσ-group if and only if the follow-

ing conditions hold: (i) = ,G D M  where D is an abelian Hall subgroup of G of odd order, and M is  
a Dedekind group; (ii) every element of G induces a power automorphism in D; (iii) ( )iO Dσ  has a nor-
mal complement in a Hall σi-subgroup of G for all i. 

Recall that an Iwasawa group is a group in which every subgroup is quasinormal.
C o r o l l a r y  3  [14].  A group G is a soluble PT-group if and only if the following conditions are 

satisfied: (i) the nilpotent residual D of G is an abelian Hall subgroup of odd order; (ii) G acts by conju-
gation on D as a group power automorphisms; (iii) G / D is an Iwasawa group.
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C o r o l l a r y  4  [12].  Let = .D G σN  Then G is a σ-soluble in which every σ-subnormal subgroup 
is modular if and only if the following conditions hold: (i) = ,G D M  where D is an abelian Hall sub-
group of G of odd order, L is σ-nilpotent and the lattice (M) is modular; (ii) every element of G induces 
a power automorphism in D; (iii) ( )iO Dσ  has a normal complement in a Hall σi-subgroup of G for all i. 

C o r o l l a r y  5  [9].  A group G is a σ-soluble PσT-group if and only if every σ-subnormal sub-
group of G is σ-hypercentrally embedded in G. 

From Theorems 3 and 5 we get the follwing known results.
C o r o l l a r y  6  [15].  A σ-soluble group G is a Tσ-group if and only if G is a soluble T-group and 

the Hall σi-subgroups of G are Dedekind for all .i I∈
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