ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

УДК 666.321+546.05 https://doi.org/10.29235/1561-8323-2024-68-4-311-316 Поступило в редакцию 19.03.2024 Received 19.03.2024

А. Ю. Сидоренко¹, Й. Ю. Якубов², академик В. Е. Агабеков¹, Б. Д. Маматкодиров², Т. В. Свиридова³, А. Б. Ибрагимов²

¹Институт химии новых материалов Национальной академии наук Беларуси, Минск, Республика Беларусь

²Институт общей и неорганической химии Академии наук Республики Узбекистан, Ташкент, Узбекистан

³Белорусский государственный университет, Минск, Республика Беларусь

ПОЛУЧЕНИЕ КАОЛИНИТОВЫХ НАНОТРУБОК И ИХ КАТАЛИТИЧЕСКАЯ АКТИВАЦИЯ КИСЛОТНОЙ ОБРАБОТКОЙ

Аннотация. Путем последовательной интеркаляции каолина диметилсульфоксидом и метанолом с последующей обработкой раствором хлорида цетилтриметиламмония получены алюмосиликатные нанотрубки (АНТ) длиной 600–1000 нм и диаметром 15–25 нм. Впервые показано, что обработка АНТ смесью H_2SO4 – H_2O_2 приводит к удалению из них органических примесей и появлению каталитической активности в реакции изомеризации эпоксида α -пинена, продуктами которой являются камфоленовый (41,4 %) и *изо*-камфоленовый (22,7 %) альдегиды в циклогексане и *транс*-карвеол (до 56,0 %) в диметилсульфоксиде.

Ключевые слова: каолин, алюмосиликатные нанотрубки, кислотная активация, каталитическая активность Для цитирования. Получение каолинитовых нанотрубок и их каталитическая активация кислотной обработкой / А. Ю. Сидоренко [и др.] // Докл. Нац. акад. наук Беларуси. — 2024. — Т. 68, № 4. — С. 311—316. https://doi.org/10.29235/1561-8323-2024-68-4-311-316

Alexander Yu. Sidorenko¹, Yuldosh Yu. Yakubov², Academician Vladimir E. Agabekov¹, Behzodjon D. Mamatkodirov², Tatiana V. Sviridova³, Aziz B. Ibragimov²

¹Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

²Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan,

Tashkent, Uzbekistan

³Belarusian State University, Minsk, Republic of Belarus

PREPARING KAOLINITE NANOTUBES AND THEIR CATALYTIC ACTIVATION BY ACID TREATMENT

Abstract. Aluminosilicate nanotubes (ANT) with a length of 600-1000 nm and a diameter of 15-25 nm were obtained by successive intercalation of kaolin with dimethyl sulfoxide and methanol followed by treatment with a cetyltrimethylammonium chloride solution. It is shown for the first time that the treatment of ANT with a mixture of $H_2SO_4-H_2O_2$ leads to removing organic impurities from them and appearing catalytic activity in the α -pinene epoxide isomerization, the products of which are campholenic (41.4 %) and *iso*-campholenic (22.7 %) aldehydes in cyclohexane and *trans*-carveol (up to 56.0 %) in dimethyl sulfoxide.

Keywords: kaolin, aluminosilicate nanotubes, acid activation, catalytic activity

For citation. Sidorenko A. Yu., Yakubov Yu. Yu., Agabekov V. E., Mamatkodirov B. D., Sviridova T. V., Ibragimov A. B. Preparing kaolinite nanotubes and their catalytic activation by acid treatment. *Doklady Natsional 'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2024, vol. 68, no. 4, pp. 311–316 (in Russian). https://doi.org/10.29235/1561-8323-2024-68-4-311-316

Введение. Наноразмерные алюмосиликатные материалы, в частности природные галлуазитовые нанотрубки, могут использоваться в качестве катализаторов, адсорбентов и др. [1–3]. Так, обработанный соляной кислотой природный галлуазит является эффективным катализатором при синтезе тетрагидропирановых и изобензофурановых соединений на основе терпеноидов [2; 3]. Однако такие нанотрубки имеют разную длину (200–2000 нм) и толщину (40–70 нм), что обуславливает непостоянство их свойств [1].

В качестве замены природным алюмосиликатным нанотрубкам галлуазита могут использоваться их синтетические аналоги, получаемые из каолинита (рис. 1) путем последовательного введения (интеркаляции) реагентов в его межслоевое пространство с последующей направленной деформацией слоев за счет химической и ультразвуковой обработки [4–7].

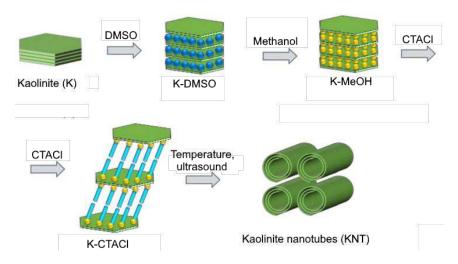


Рис. 1. Получение нанотрубок из каолина [7]

Fig. 1. Preparation of nanotubes from kaolin [7]

Так, интеркаляция китайского каолинита ДМСО, метанолом (MeOH) с последующим воздействием метанольным раствором хлорида цетилтриметиламмония (CTACl) в течение 24,0 ч при температуре от 30 до 100 °C приводила к образованию каолинитовых нанотрубок (КНТ) [4]. Согласно [5], алюмосиликатные нанотрубки (АНТ) получали путем перемешивания интеркалированной метанолом каолиновой глины в растворе CTACl при комнатной температуре в течение 72,0 ч с дальнейшей обработкой ультразвуком.

Одним из проблематичных этапов синтеза нанотрубок является интеркаляция каолина метанолом, поскольку продолжительность такой обработки составляет 7–10 дней [4; 5] при количестве реагента до 200 мл/г из-за необходимости его многократной (до 10 раз) замены на свежий. Уменьшение времени синтеза АНТ и количества расходуемого метанола на этой стадии может быть достигнуто за счет использования экстрактора Сокслета, что обеспечивает отсутствие необходимости в периодической замене MeOH [8].

Недавно был разработан метод получения нанотрубок из природного каолина (месторождение Дедовка, Беларусь [9]) длиной 800–1100 нм и диаметром 50–60 нм [10]. Синтез проводился в мягких условиях (60–66 °C, атмосферное давление) и относительно небольшом количестве метанола (7,0 мл/г), необходимого для их образования.

Синтезированные нанотрубки, как правило, содержат примеси органических соединений, которые используются при их получении [4; 5; 10], что затрудняет использование АНТ в качестве адсорбентов и катализаторов. Одним из способов удаления таких примесей является обработка АНТ при высоких температурах (600–900 °C) [4; 5].

Кислотная функционализация природных галлуазитовых нанотрубок может быть осуществлена путем введения на их поверхность SO_3H -групп [2] или обработкой растворами кислот [2; 3; 11], в том числе смесью $H_2SO_4-H_2O_2$ (раствор пираньи) [11]. Это приводит к увеличению их удельной площади поверхности и кислотности [3; 11]. Известно, что система $H_2SO_4-H_2O_2$ является эффективным средством очистки материалов от органических включений [11].

Целью настоящей работы является получение алюмосиликатных нанотрубок из природного каолина, их очистка от органических примесей для использования в качестве катализаторов различных превращений терпеноидов.

Материалы и методы исследования. В качестве исходного сырья для получения алюмосиликатных нанотрубок использовали промышленный каолин марки АКФ-78 (Ангрен, Узбеки-

стан). Предварительно для удаления неорганических примесей перед проведением интеркаляции исходную глину промывали 5,0 %-ным раствором HCl [7; 12]. В трехгорлую колбу помещали 30,0 г глины и 150 мл раствора кислоты, нагревали до 80 °C и перемешивали при этой температуре 1,0 ч. Осадок отделяли и промывали на фильтре дистиллированной водой до отсутствия Cl⁻, сушили 3,0 ч при 105 °C и измельчали в порошок. Согласно данным EDX спектроскопии (JEOL JCM-6000Plus), обработанный соляной кислотой каолин имел следующий состав (мас.%): 43,8 Al₂O₃, 53,9 SiO₂, 2,0 K₂O и 0,4 TiO₂.

Синтез алюмосиликатных нанотрубок осуществляли аналогично, как и в [10], путем обработки каолина ДМСО при 90 °C, метанолом, используя экстрактор Сокслета, и метанольным раствором СТАСІ при 66 °C. Твердую фазу четыре раза промывали горячим этанолом и сушили при 150 °C. Контроль процесса интеркаляции осуществляли методом ИК-спектроскопии. Полученные спектры содержали полосы поглощения, характерные для ДМСО- (3663 см⁻¹) и МеОН-интеркалированных форм каолина (3535 см⁻¹) [10].

Для очистки полученных АНТ от органических примесей проводили их обработку раствором пираньи, который готовили путем смешения 95 %-ной $\rm H_2SO_4$ и 30 %-ной $\rm H_2O_2$ в объемном соотношении 3 : 1 [11]. Навеску нанотрубок (1,0 г) помещали в трехгорлую колбу, добавляли 5,0 мл полученного раствора, медленно нагревали до 90 °C, чтобы избежать выброса смеси из сосуда и перемешивали при этой температуре в течение 1,0 ч. Затем твердую фазу фильтровали, промывали дистиллированной водой, сушили (105 °C, 3,0 ч) и фракционировали на сите до размеров частиц менее 100 мкм. Изображения исходного каолина и синтезированных из него АНТ получали методом просвечивающей (ПЭМ, LEO 906E) и сканирующей (СЭМ, Zeiss Leo 1530) электронной микроскопии. Изомеризацию эпоксида α -пинена и анализ образующихся продуктов проводили по методике, изложенной в [13].

Результаты и их обсуждение. Для исходного каолина наблюдались характерные для этого минерала пластинчатые частицы (рис. 2, a). В материале, подвергнутом последовательной интеркаляции ДМСО, метанолом и СТАС1 присутствуют наноразмерные трубки длиной 600-1000 нм и диаметром 15-25 нм (рис. 2, b), а также частицы исходного каолина в небольшом количестве.

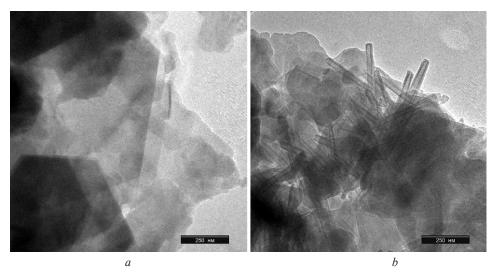


Рис. 2. ПЭМ-изображения исходного каолина (*a*) и полученных из него нанотрубок (*b*) Fig. 2. TEM images of starting kaolin (*a*) and nanotubes obtained from it (*b*)

На ИК-спектре исходного каолинита АКФ-78 (рис. 3) наблюдается интенсивное поглощение в области 1200-1000 см $^{-1}$ с пиками при 1109, 1033 и 1009 см $^{-1}$, которые соответствуют валентным колебаниям Si-O в его структуре [4; 5; 10]. Набор полос в области 600-400 см $^{-1}$ связан с деформационными колебаниями связей Si-O, среди которых линии 538 и 470 см $^{-1}$ относятся к фрагментам Si-O-Al и Si-O-Si соответственно. Поглощение при 914 см $^{-1}$ обусловлено деформационными колебаниями групп Al-OH [4; 5; 10].

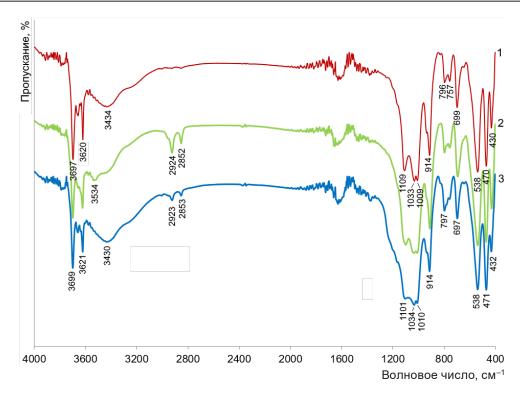


Рис. 3. ИК-спектры исходного каолина (1), АНТ (2) и АНТ после обработки раствором пираньи (3) Fig. 3. FTIR spectra of starting kaolin (1), ANT (2) and ANT treated with piranha solution (3)

В области поглощения при 3700–3500 см⁻¹ наблюдаются линии 3620 и 3697 см⁻¹, обусловленные валентными колебаниями структурных ОН-групп (рис. 3). Последняя полоса связана с колебаниями гидроксилов, находящихся вблизи поверхности октаэдрических (Al–O) слоев каолинита и способных образовывать водородные связи с тетраэдрическими (Si–O) слоями. Широкое поглощение при 3434 см⁻¹ указывает на наличие адсорбированных молекул воды на поверхности каолинита [4; 5; 10].

ИК-спектр полученных нанотрубок практически идентичен спектру исходного материала (рис. 3), что свидетельствует о сохранении элементов структуры каолинита. Появляющийся дублет при 2924 и 2852 см⁻¹ (–CH₂– и CH₃–) четко свидетельствует о наличии органических соединений в образующихся нанотрубках [4; 5; 9]. Широкая линия в районе 3434 см⁻¹, наблюдаемая в случае исходного каолина, резко уменьшается по интенсивности и смещается к 3534 см⁻¹, указывая на значительное уменьшение содержания адсорбированной воды в КНТ, по-видимому, также за счет

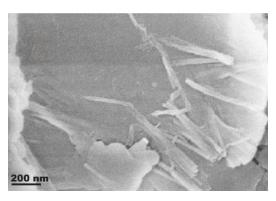


Рис. 4. СЭМ-изображение АНТ после обработки раствором пираньи

Fig. 4. SEM image of an ANT after treatment with piranha solution

присутствия органических соединений. Подобные примеси характерны для каолинитовых нанотрубок и сохраняются в результате неполного удаления реагентов после процедуры синтеза [4; 5; 10].

В результате обработки каолинитовых нанотрубок раствором пираньи на их ИК-спектре происходит значительное снижение интенсивности пиков при 2923 и 2853 см $^{-1}$, а поглощение в области 3600—3400 см $^{-1}$ (3430 см $^{-1}$, H_2O) резко возрастает по интенсивности, приближаясь к таковой для исходного каолина АКФ-78 (рис. 3). Таким образом, можно полагать, что обработка АНТ смесью H_2SO_4 и H_2O_2 приводит к удалению значительного количества органических примесей и, по-видимому, гидрофильности их поверхности. Отметим, что форма, интенсивность линий при 538, 1034 (Si–O), 3621 и 3699 см $^{-1}$ (–OH)

при этом не изменяются, что однозначно указывает на сохранение кристаллической структуры нанотрубок после воздействия на них раствором пираньи. Это четко подтверждается данными сканирующей электронной микроскопии (рис. 4).

Исходные каолин АКФ-78 и полученные из него нанотрубки каталитическую активность не проявляют. В присутствии обработанных раствором пираньи АНТ продуктами изомеризации эпоксида α-пинена при 30 °C в циклогексане являются камфоленовый (41,4 %) и изо-камфоленовый (22,7 %) альдегиды. Отметим, что схожие значения селективности по этим соединениям наблюдались в присутствии модифицированных соляной кислотой иллита [13] и галлуазита [14]. В растворе диметилсульфоксида при 90 °C реакция протекает с образованием *транс*-карвеола в качестве основного продукта (52,0–56,0 %).

Заключение. Получены алюмосиликатные нанотрубки (АНТ) длиной 600–1000 нм и диаметром 15–25 нм путем последовательной обработки каолина АКФ-78 (Узбекистан) диметилсульфоксидом (ДМСО), метанолом и раствором хлорида цетилтриметиламмония (СТАСІ). Установлено, что обработка АНТ смесью $\rm H_2SO_4-H_2O_2$ (раствор пираньи) позволяет эффективно удалять из них примеси органических соединений. Показана перспективность использования модифицированных нанотрубок в качестве катализатора изомеризации эпоксида α -пинена.

Благодарности. Авторы выражают благодарность доценту А. Ахо (Университет «Або Академи», Финляндия) за запись изображения СЭМ алюмосиликатных нанотрубок.

Acknowledgements. The authors express their gratitude to Associate Professor A. Aho (Abo Akademi University, Finland) for recording the SEM image of the aluminosilicate nanotubes

Список использованных источников

- 1. Massaro M., Past, present and future perspectives on halloysite clay minerals / M. Massaro, R. Noto, S. Riela // Molecules. 2020. Vol. 25, N 20. Art. 4863. https://doi.org/10.3390/molecules.25204863
- 2. Massaro, M. Halloysite nanotubes: smart nanomaterials in catalysis / M. Massaro, R. Noto, S. Riela // Catalysts. 2022. Vol. 12, N 2. Art. 149. https://doi.org/10.3390/catal12020149
- 3. Catalytic synthesis of terpenoid-derived hexahydro-2H-chromenes with analgesic activity over halloysite nanotubes / A. Yu. Sidorenko [et al.] // Applied Catalysis A: General. 2021. Vol. 618. Art. 118144. https://doi.org/10.1016/j.apcata. 2021.118144
- 4. From platy kaolinite to aluminosilicate nanoroll via one-step delamination of kaolinite: effect of the temperature of intercalation / P. Yuan [et al.] // Applied Clay Science. 2013. Vol. 83–84. P. 68–76. https://doi.org/10.1016/j.clay.2013.08.027
- 5. A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes / X. Li [et al.] // Applied Clay Science. 2019. Vol. 168. P. 421–427. https://doi.org/10.1016/j.clay.2018.12.014
- 6. Liu, Q. Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls / Q. Liu, X. Li, H. Cheng // Applied Clay Science. 2016. Vol. 124–125. P. 175–182. https://doi.org/10.1016/j.clay.2016.02.015
- 7. An efficient method to prepare aluminosilicate nanoscrolls under mild conditions / S. Zhang [et al.] // Chemical Communications. 2021. Vol. 57, N 6. P. 789–792. https://doi.org/10.1039/d0cc07291e
- 8. Qu, H. Efficient preparation of kaolinite/methanol intercalation composite by using a Soxhlet extractor / H. Qu, S. He, H. Su // Scientific reports. 2019. Vol. 9. Art. 8351. https://doi.org/10.1038/s41598-019-44806-y
- 9. Дятлова, Е. М. Структурные особенности природных и обогащенных каолинов месторождений Республики Беларусь / Е. М. Дятлова, О. А. Сергиевич, Н. М. Бобкова // Вес. Нац. акад. навук. Сер. хім. наук. 2018. Т. 54, № 1. С. 96—102. https://doi.org/10.29235/1561-8331-2018-54-1-96-102
- 10. Получение алюмосиликатных нанотрубок из природного каолина / В. Е. Агабеков [и др.] // Докл. Нац. акад. наук Беларуси. 2021. Т. 65, № 5. С. 576—581. https://doi.org/10.29235/1561-8323-2021-65-5-576-581
- 11. Yu, J. Halloysite nanotubes as bimodal Lewis/Brønsted acid heterogeneous catalysts for the synthesis of heterocyclic compounds / J. Yu, J. Mateos, M. Carraro // Nanomaterials. 2023. Vol. 13, N 3. Art. 394. https://doi.org/10.3390/nano13030394
- 12. Role of impurities in kaolinite intercalation and subsequent formation of nanoscrolls / S. Zhang [et al.] // Inorganic Chemistry. 2023. Vol. 62, N 33. P. 13205–13211. https://doi.org/10.1021/acs.inorgchem.3c01263
- 13. Catalytic isomerization of α -pinene oxide in the presence of acid-modified clays / A. Yu. Sidorenko [et al.] // Molecular Catalysis. 2018. Vol. 448. P. 18–29. https://doi.org/10.1016/j.mcat.2018.01.021
- 14. Synthesis of fencholenic aldehyde from α -pinene epoxide on modified clays / A. Yu. Sidorenko [et al.] // Chemistry of Natural Compounds. 2018. Vol. 54. P. 893–897. https://doi.org/10.1007/s10600-018-2506-9

References

- 1. Massaro M., Noto R., Riela S. Past, present and future perspectives on halloysite clay minerals. *Molecules*, 2020, vol. 25, no. 20, art. 4863. https://doi.org/10.3390/molecules25204863
- 2. Massaro M., Noto R., Riela S. Halloysite nanotubes: smart nanomaterials in catalysis. *Catalysts*, 2022, vol. 12, no. 2, art. 149. https://doi.org/10.3390/catal12020149

- 3. Sidorenko A. Yu., Kurban Yu. M., Il'ina I. V., Li-Zhulanov N. S., Korchagina D. V., Ardashov O. V., Wärnå J., Volcho K. P., Salakhutdinov N. F., Murzin D. Yu., Agabekov V. E. Catalytic synthesis of terpenoid-derived hexahydro-2H-chromenes with analgesic activity over halloysite nanotubes. *Applied Catalysis A: General*, 2021, vol. 618, art. 118144. https://doi.org/10.1016/j. apcata.2021.118144
- 4. Yuan P., Tan D., Annabi-Bergaya F., Yan W., Liu D., Liu Z. From platy kaolinite to aluminosilicate nanoroll via one-step delamination of kaolinite: effect of the temperature of intercalation. *Applied Clay Science*, 2013, vol. 83–84, pp. 68–76. https://doi.org/10.1016/j.clay.2013.08.027
- 5. Li X., Wang D., Liu Q., Komarneni S. A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes. *Applied Clay Science*, 2019, vol. 168, pp. 421–427. https://doi.org/10.1016/j.clay.2018.12.014
- 6. Liu Q., Li X., Cheng H. Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls. *Applied Clay Science*, 2016, vol. 124–125, pp. 175–182. https://doi.org/10.1016/j.clay.2016.02.015
- 7. Zhang S., Liu Q., Yang Y., Zhang H., Liu J., Zeng S., LaChance A. M., Barrett A. T., Sun L. An efficient method to prepare aluminosilicate nanoscrolls under mild conditions. *Chemical Communications*, 2021, vol. 57, no. 6, pp. 789–792. https://doi.org/10.1039/d0cc07291e
- 8. Qu H., He S., Su H. Efficient preparation of kaolinite/methanol intercalation composite by using a Soxhlet extractor. *Scientific reports*, 2019, vol. 9, art. 8351. https://doi.org/10.1038/s41598-019-44806-y
- 9. Dyatlova E. M., Sergievich O. A., Bobkova N. M. Investigation of structural features of natural and enriched kaolins of the Republic of Belarus. *Vestsi Natsyianal'nai akademii navuk Belarusi. Seryya khimichnykh navuk = Proceedings of the National Academy of Sciences of Belarus*, Chemical *series*, 2018, vol. 54, no. 1, pp. 96–102 (in Russian). https://doi.org/10.29235/1561-8331-2018-54-1-96-102
- 10. Agabekov V. E., Sidorenko A. Yu., Sviridova T. V., Kurban Yu. M., Sviridov D. V. Obtaining aluminosilicate nanotubes from natural kaolin. *Doklady Natsional noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2021, vol. 65, no. 5, pp. 576–581 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-5-576-581
- 11. Yu J., Mateos J., Carraro M. Halloysite nanotubes as bimodal Lewis/Brønsted acid heterogeneous catalysts for the synthesis of heterocyclic compounds. *Nanomaterials*, 2023, vol. 13, no. 3, art. 394. https://doi.org/10.3390/nano13030394
- 12. Zhang S., Liu Q., Luo J., Yang N., Zhang Y., Liu Y., Sun L. Role of impurities in kaolinite intercalation and subsequent formation of nanoscrolls. *Inorganic Chemistry*, 2023, vol. 62, no. 33, p. 13205–13211. https://doi.org/10.1021/acs.inorg-chem.3c01263
- 13. Sidorenko A. Yu., Kravtsova A. V., Aho A., Heinmaa I., Kuznetsova T. F., Murzin D. Yu., Agabekov V. E. Catalytic isomerization of α-pinene oxide in the presence of acid-modified clays. *Molecular Catalysis*, 2018, vol. 448, pp. 18–29. https://doi.org/10.1016/j.mcat.2018.01.021
- 14. Sidorenko A. Yu., Ignatovich Zh. V., Ermolinskaya A. L., Kravtsova A. V., Baranovskii A. V., Koroleva E. V., Agabekov V. E. Synthesis of fencholenic aldehyde from α-pinene epoxide on modified clays. *Chemistry of Natural Compounds*, 2018, vol. 54, pp. 893–897. https://doi.org/10.1007/s10600-018-2506-9

Информация об авторах

Сидоренко Александр Юрьевич — канд. хим. наук, заведующий лабораторией. Институт химии новых материалов НАН Беларуси (ул. Скорины, 36, 220084, Минск, Республика Беларусь). E-mail: sidorenko@ichnm.by.

Якубов Йулдош Юсупбоевич – д-р хим. наук, гл. науч. сотрудник. Институт общей и неорганической химии АН Республики Узбекистан (ул. Мирзо-Улугбека, 77-а, 100170, Ташкент, Республика Узбекистан). E-mail: yuldoshyakubov@mail.ru.

Агабеков Владимир Енокович — академик, д-р хим. наук, профессор, заведующий отделом. Институт химии новых материалов НАН Беларуси (ул. Скорины, 36, 220084, Минск, Республика Беларусь). E-mail: mixa@ichnm.by.

Маматкодиров Бекзоджон Дильшоджон угли — аспирант. Институт общей и неорганической химии АН Республики Узбекистан (ул. Мирзо-Улугбека, 77-а, 100170, Ташкент, Республика Узбекистан). E-mail: mamatqodirovbehzodjon@gmail.com.

Свиридова Татьяна Викторовна — д-р хим. наук, профессор. Белорусский государственный университет (пр. Независимости, 4, 220050, Минск, Республика Беларуси). E-mail: sviridova@bsu.by.

Ибрагимов Азиз Бахтиерович — д-р хим. наук, профессор, директор. Институт общей и неорганической химии АН Республики Узбекистан (ул. Мирзо-Улугбека, 77-а, 100170, Ташкент, Республика Узбекистан). E-mail: aziz ibragimov@mail.ru.

Information about the authors

Sidorenko Alexander Yu. – Ph. D. (Chemistry), Head of the Laboratory. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus (36, Skorina Str., 220084, Minsk, Republic of Belarus). E-mail: sidorenko@ichnm.by.

Yakubov Yuldosh Yu. – D. Sc. (Chemistry), Chief Researcher. Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan (77-a, Mirzo-Ulugbek Str., 100170, Tashkent, Republic of Uzbekistan). E-mail: yuldoshyakubov@mail.ru.

Agabekov Vladimir E. – Academician, D. Sc. (Chemistry), Professor, Head of the Department. Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus (36, Skorina Str., 220084, Minsk, Republic of Belarus). E-mail: mixa@ichnm.by.

Mamatkodirov Behzodjon D. – Postgraduate Student. Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan (77-a, Mirzo-Ulugbek Str., 100170, Tashkent, Republic of Uzbekistan). E-mail: mamatqodirovbehzodjon@gmail.com.

Sviridova Tatiana V. – D. Sc. (Chemistry), Professor. Belarusian State University (4, Nezavisimosti Ave., 220050, Minsk, Republic of Belarus). E-mail: sviridova@bsu.by.

Ibragimov Aziz B. – D. Sc. (Chemistry), Professor, Director. Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan (77-a, Mirzo-Ulugbek Str., 100170, Tashkent, Republic of Uzbekistan). E-mail: aziz ibragimov@mail.ru.