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Abstract. In this article, we study the properties of polynomials over division rings. Formulas for finding roots of 
polynomials which are the products of linear factors are obtained. These formulas generalize the known results for quaternion 
algebras. As known, if a minimal polynomial of a conjugacy class A in a noncommutative division ring is quadratic, then any 
polynomial having two roots in A vanishes identically on A. We show that in the case of a conjugacy class with minimal 
polynomial of larger degree, the situation is completely different. For any conjugacy class with minimal polynomial of degree 
>2, we construct a quadratic polynomial with infinitely many roots in this class, but there also are infinitely many elements in 
this class which are not the roots of this polynomial.
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КОРНИ МНОГОЧЛЕНОВ С КОЭФФИЦИЕНТАМИ В КОЛЬЦАХ С ДЕЛЕНИЕМ

(Представлено академиком В. И. Янчевским)

Аннотация. В работе изучены свойства многочленов с коэффициентами в кольцах с делением. Получены фор-
му лы для нахождения корней многочленов, являющихся произведением линейных множителей, обобщающие из-
вест ные результаты для кватернионных алгебр. Как известно, если минимальный многочлен класса сопряженности А  
в некоммутативном кольце с делением является квадратичным, то любой многочлен, имеющий два корня в A, 
обнуляется тождественно на A. В работе показано, что в случае класса сопряженности с минимальным многочленом 
большей степени ситуация принципиально другая. Для любого класса сопряженности с минимальным многочленом 
степени >2 построен квадратичный многочлен, имеющий бесконечно много корней в этом классе, при этом в данном 
классе сопряженности имеется бесконечно много элементов, не являющихся корнями такого многочлена.
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Introduction and preliminary results. In this paper, we study polynomials over division rings. Let 
D be an associative division ring. Let also D[x] denote the polynomial ring in one variable x over D, where 
x commutes elementwise with D. The coefficients of such polynomials may not commute with elements 
of the ring. Polynomials in D[x] are added in the obvious way, and multiplied according to the rule

© Гутор А. Г., Тихонов С. В., 2024



360 Doklady of the National Academy of Sciences of Belarus, 2024, vol. 68, no. 5, рр. 359–364

(anxn + · · · + a0)(bmxm + · · · + b0) = (cm+nxm+n + · · · + c0),

where .i j
i j k

kc a b
+ =

= ∑  For references on polynomial rings over division rings, see [1, Ch. 5, §16; 2]. The 

degree of P(x) ∈ D[x] is defined in the usual way. For a polynomial

P(x) = anxn + an-1xn−1 + · · · + a1x + a0 ∈ D[x]

and an element a ∈ D, we define P(a) to be the element

anаn + an-1аn−1 + · · · + a1а + a0.

An element a ∈ D is said to be a (right) root of P(x) if P(a) = 0. The noncommutative form of the 
Remainder Theorem says that an element a ∈ D is a root of a nonzero polynomial P(x) iff x − a is a right 
divisor of P(x) in D[x] (see, e. g., [1, Prop. 16.2]).

For a ∈ D, the set

[a] := {dad−1|d ∈ D \ {0}}

will be called the conjugacy class of a. The centralizer of a is defined as

Z(a) := {b ∈ D|ab = ba}.

Over a field, a polynomial of degree n has at most n distinct roots. Over a division ring this is no 
longer true, but by Gordon–Motzkin theorem [1, Th. 16.4], a polynomial of degree n in D[x] has roots 
in at most n conjugacy classes of D, moreover, if P(x) = (x − a1)…(x − an), where a1, …, an ∈ D, then 
any root of P(x) is conjugate to some ai. Note that from P(x) = L(x)R(x) ∈ D[x] it does not follow that 
P(a) = L(a)R(a) (see Proposition below). In particular, if a is a root of L(x), then a is not necessarily  
a root of P(x).

The problem of finding the roots of a polynomial over a division ring has been investigated in ring 
theory and applied mathematics. The most studied is the case of polynomials over Hamilton’s quaternion 
algebra ℍ. In analogy to field theory, the notion of a (right) algebraically closed division ring R is defined. 
This is equivalent to saying that every polynomial in R[x] splits completely into a product of linear factors 
in R[x]. By Niven–Jacobson theorem [1, Th. 16.14], the quaternion division algebra over a real-closed 
field is algebraically closed. Baer’s theorem [1, Th. 16.15] says that noncommutative centrally finite 
(right) algebraically closed division rings are precisely the division rings of quaternions over real-closed 
fields. In [3], a formula was found for roots of any quadratic polynomial in ℍ[x]. This formula was 
generalized to any quaternion algebra in [4] and [5]. In [6], it was shown that the roots of any polynomial 
in ℍ[x] are roots of the real companion polynomial. In [7], it was presented an algorithm for finding 
all roots of a polynomial in ℍ[x] using the real companion polynomial. In [8], a few of these results 
were generalized to the case of any central division algebra. Recall that a central division algebra is  
a division algebra which is finite dimensional over its center. A complete method for finding the roots of 
all polynomials over an octonion division algebra was described in [9].

In [10], it was presented the following explicit formula describing roots of a product of linear factors 
in ℍ[x].

T h e o r e m 1 [10, Th. 4]. Let P(x) = (x − qn)…(x − q1), where q1, …, qn ∈ ℍ. If the conjugacy classes 
[qk] are distinct, then the polynomial P(x) has exactly n roots ζk which are related to the elements qk as 
follows:

1;  1, , ,( ) ( ( ))k k k k k kP q q P q k n−ζ = = …

1 1

1, 1,
( )...( ),

(  ) :k
k

if k
x q x q otherwise

P x
−

=

− −





=

and ( )kP x  is the conjugate polynomial of Pk(x).
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In theorem 9 below, we generalize this formula for the case of any division ring. This is the first aim 
of this paper.

Let F be the center of a division ring D. If a is a root of a polynomial f(x) ∈ F[x], then any element 
from the conjugacy class [a] is a root of f(x). The conjugacy class A is called algebraic over F if one (and 
hence all) of its elements is algebraic over F. If A is algebraic over F, then the minimal polynomial of A 
is, by definition, the minimal polynomial of any element from A.

In the case of a quadratic minimal polynomial, there is the following
T h e o r e m 2 [1, Lm. 16.17]. Let D be a division ring with center F, and let A be a conjugacy class 

of D which has a quadratic minimal polynomial λ(x) over F. If P(x) ∈ D[x] has two roots in A, then 
P(x) ∈ D[x]λ(x) and P(x) vanishes identically on A.

This means that a polynomial over a quaternion division algebra may have two different types of 
roots: isolated and spherical roots. A root q of P(x) is called spherical if q is not central and for every  
d ∈ [q] we have P(d) = 0. A root q is called isolated if the conjugacy class [q] contains no other root of 
P(x).

The second aim of this paper is to show that in the case of a conjugacy class with minimal polynomial 
of bigger degree the situation is completely different. More precisely, we proved the following

T h e o r e m 3. Let D be a noncommutative division ring with the center F, a ∈ D an algebraic over 
F element with minimal polynomial λ(x) of degree n > 2. Then there exists a quadratic polynomial 
P(x) ∈ D[x] such that

1. P(x) has infinitely many roots in the conjugacy class [a],
2. There are infinitely many elements in [a] which are not roots of P(x),
3. λ(x) does not divide P(x).
In the proof of Theorem 3 we will use the following statements.
T h e o r e m 4 [1, Th. 16.6]. Let D be a division ring with center F and A a conjugacy class of D which 

is algebraic over F with minimal polynomial f (x) ∈ F[x]. A polynomial P(x) ∈ D[x] vanishes identically 
on A iff P(x) ∈ D[x] f (x).

T h e o r e m 5 [1, Th. 16.11; 2, Th. 4]. If a polynomial P(x) ∈ D[x] has two distinct roots in a conju-
gacy class of D, then it has infinitely many roots in that class.

P r o p o s i t i o n [1, Pr. 16.3]. Let D be a division ring and let P(x) = L(x)R(x) ∈ D[x]. Let d ∈ D be 
such that h := R(d) ≠ 0. Then

P(d) = L(hdh−1)R(d).

In particular, if d is a root of P(x) but not of R(x), then hdh−1 is a root of L(x).
P r o o f  o f  T h e o r e m 3. Let a ∈ D be an element with minimal polynomial λ(x) of degree n > 2. 

Let also d ∈ D be an element such that d does not commute with a. Let q = dad−1  
and b = (q − a)q(q − a)−1. Then q ≠ a and q ∈ [a]. By Proposition, q is a root of the polynomial  
P(x) := (x − b)(x − a).

Since a is also a root of P(x), then by Theorem 5, P(x) has infinitely many roots in [a]. Moreover, 
since the degree of λ(x) is bigger than 2, then λ(x) does not divide P(x). Hence by Theorem 4, P(x) does 
not vanish identically on [a].

Suppose that tat−1 ∈ [a] is not a root of P(x). This means that tat−1 ≠ a and

(tat−1 − a)tat−1(tat−1 − a)−1 ≠ b

by Proposition. 
Note that

(tat−1 − a)tat−1(tat−1 − a)−1 = (ta − at)a(ta − at)−1.

Let z ∈ Z(a), t1 = t + z and 1
11 1 .tq t a −=  Then

(q1 − a)q1(q1 − a)−1 = ( 1
11 t at a − − ) 1

11 tt a − ( 1
11 t at a − − )−1 = 

= (t1a − at1)a(t1a − at1)−1 = ((t + z)a − a(t + z))a((t + z)a − a(t + z))−1 = (ta − at)a(ta − at)−1 ≠ b.
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Thus q1 is not a root of P(x) by Proposition. 
Now let z1 ∈ Z(a), z1	≠	z. Note that the centralizer Z(a)	is	infinite	by	[2,	Th.	3].	Let	also	t2 = t + z1 and 

1
22 2 .  tq t a −=  Then q2 is also not a root of P(x).

Assume that q1 = q2. Then

(t + z)a(t + z)−1 = (t + z1)a(t + z1)−1 ⇔ (t + z1)−1(t + z)a = a(t + z1)−1(t + z) ⇔

⇔ (t + z1)−1(t + z1 + (z −	z1))a = a(t + z1)−1(t + z1 + (z −	z1)) ⇔

⇔ a + (t + z1)−1(z −	z1)a = a + a(t + z1)−1(z −	z1) ⇔

⇔ (t + z1)−1(z −	z1)a = a(t + z1)−1(z −	z1) ⇔ (t + z1)−1a(z −	z1) = a(t + z1)−1(z −	z1) ⇔

⇔ (t + z1)−1a = a(t + z1)−1 ⇔ a(t + z1) = (t + z1)a ⇔ at = ta.

This gives a contradiction since t does not commute with a. Then q1	≠	q2. Hence any z ∈ Z(a)	defines	
the element (t + z)a(t + z)−1 ∈	[a]	which	is	not	a	root	of	P(x) and all such elements are distinct. Since the 
centralizer Z(a)	is	infinite,	then	there	are	infinitely	many	elements	in	[a]	which	are	not	roots	of	P(x).	□

R e m a r k 1. In the notation of the proof of Theorem 3, let

b1 = (tat−1	−	a)tat−1(tat−1	−	a)−1.

The polynomials (x −	b)(x −	a) and (x −	b1)(x −	a) have infinitely many roots in the conjugacy class 
[a],	but a is the unique common root of these polynomials.

Roots of polynomials. It seems to us that the following lemma may be a known result, but we have 
not found an exact reference. For the reader’s convenience, we provide a proof here.

L	e	m	m	a.	Let D be a division ring. Let also

P(x) = (x −	dn)…(x −	d1),

where d1, …, dn ∈ D. If the conjugacy classes [dk]	are distinct, then the polynomial P(x) has exactly n 
roots and any root of P(x) is conjugate to some di. 

P	r	o	o	f.	By	Gordon–Motzkin	theorem	[1,	Th.	16.4],	the	roots	of	P(x) lie in n conjugacy classes of D 
and any root of P(x) is conjugate to some di.	Let	d ∈ D be a root of P(x), then P(x) = L(x)(x −	d) for some 
L(x) ∈ D[x].	By	Proposition,	all	roots	of	P(x)	different	from	d are conjugate to roots of L(x). Since the 
conjugacy	classes	[dk]	are	distinct	and	deg(L(x)) = n −	1,	then	by	Gordon–Motzkin	theorem,	L(x) has no 
roots	in	[d].	Thus	P(x)	has	only	one	root	in	each	conjugacy	class.	□

T h e o r e m 6. Let D be a division ring with center F. Let also

P(x) = (x −	dn)…(x −	d1),

where d1, …, dn ∈ D. Assume that d1, …, dn−1 are algebraic over F. Let also fi(x) be the minimal polyno-
mial of di, i = 1, …, n	−	1. If the conjugacy classes [dk]	are distinct, then the polynomial P(x) has exactly 
n zeros ζk which are related to the elements dk as follows:

ζk = Pk(dk)dk(Pk(dk))–1; k = 1, …, n,

1 1

1, 1,
( ) :

( )... ( ), ,k
k

if k
P x

S x S x otherwise−

=
=




where Si(x) ∈ D[x]	is such that fi(x) = Si(x)(x −	di), i = 1, …, n −	1.
P r o o f. Since Si(x)	has	coefficients	in	the	field	F(di), then

fi(x) = Si(x)(x −	di) = (x −	di)Si(x) 
for i = 1, …, n	−	1.	Note	that

P(x)Pk(x) = (x −	dn)…(x −	d1)S1(x)…Sk−1(x) = (x	−	dn)…(x −	dk)fk−1(x)…f1(x).

Since fk−1(x)…f1(x) ∈ F[x],	then	dk is a root of the polynomial P(x)Pk(x). Note that for i = 1, …, k	−	1,	
dk ∉ [di],	so	dk is not a root of fi(x)	by	Dickson’s	Theorem	[1,	Th.	16.8].	Hence	dk is not a root of  fk−1(x)…
f1(x). Then dk is not a root of Pk(x). Indeed,
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(x − dk−1)…(x − d1)Pk(x) = (x − dk−1)…(x − d1)S1(x)…Sk−1(x) = fk−1(x)…f1(x)

and if dk is a root of Pk(x), then dk is a root of fk−1(x)…f1(x).
Hence by Proposition, Pk(dk)dk(Pk(dk))−1 is a root of P(x) for k = 1, …, n. By Lemma, P(x) has no other 

roots. □
In the notation of Theorem 6, we have the following
C o r o l l a r y.  Let D be a division ring with center F, d1, d2 ∈ D such that the conjugacy classes [d1] 

and [d2] are distinct. Assume that d1 is algebraic over F. Let also f(x) be the minimal polynomial of d1 
and S(x) ∈ D[x] such that f (x) = S(x)(x − d1). Then

(x − d2)(x − d1) = (x − d)(x − S(d2)d2(S(d2))−1),

where d = (d1 − S(d2)d2(S(d2))−1)d1(d1 − S(d2)d2(S(d2))−1)−1.
P r o o f. Let P(x) := (x − d2)(x − d1). By Theorem 6, d3 := S(d2)d2(S(d2))−1 is a root of P(x). Then  

x − d3 is a right divisor of P(x) and P(x) = (x − d)(x − d3) for some d ∈ D. Since d1 is a root of P(x) and  
d1 ≠ d3, then by Proposition,

d = (d1 − d3)d1(d1 − d3)−1 = (d1 − S(d2)d2(S(d2))−1)d1(d1 − S(d2)d2(S(d2))−1)−1. □

R e m a r k 2. The formula from the previous corollary allows to change the order of factors in products 
of monic linear polynomials. This formula generalizes formulas for Hamilton’s quaternion algebra from 
[11, Lm. 1] (see also [10, Th.7]).

E x a m p l e. Let F be a field, char(F) ≠ 2. Let also Q be a quaternion division algebra over F. 
Assume that d1, d2 ∈ Q, [d1] ≠ [d2]. If d1 ∉ F then the minimal polynomial of d1 is (x − 1d )(x − d1), 

where 1d  is the conjugate of d1. Hence in the notation of Corollary, S(x) = x − 1d . Then

S(d2)d2(S(d2))−1 = (d2 − 1d )d2(d2 − 1d )−1.

Simple computations show that

(d1 − S(d2)d2(S(d2))−1)d1(d1 − S(d2)d2(S(d2))−1)−1 = (d2 − 1d )d1(d2 − 1d )−1.
Thus

(x − d2)(x − d1) = (x − hd1h−1)(x − hd2h−1),

where h = d2 − 1d  (compare with the formula from [11, Lm. 1]).
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