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Abstract. In this article, we study the properties of polynomials over division rings. Formulas for finding roots of
polynomials which are the products of linear factors are obtained. These formulas generalize the known results for quaternion
algebras. As known, if a minimal polynomial of a conjugacy class A in a noncommutative division ring is quadratic, then any
polynomial having two roots in A vanishes identically on A. We show that in the case of a conjugacy class with minimal
polynomial of larger degree, the situation is completely different. For any conjugacy class with minimal polynomial of degree
>2, we construct a quadratic polynomial with infinitely many roots in this class, but there also are infinitely many elements in
this class which are not the roots of this polynomial.
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A.TI.Tyrop, C. B. Tuxonos

benopyccxuii 2cocyoapemesennutii ynugepcumem, Munck, Pecnybnuxa benapyco
KOPHU MHOT'OYJEHOB C KOO®®PUINNUEHTAMHU B KOJBIAX C AEJJEHUEM
(Ilpeocmasneno akademuxom B. U. Anuescrum)

AHHOTanus. B pabore U3y4yeHbl CBOWCTBA MHOI'OUJICHOB ¢ KOG GHUIIMEHTaMHU B KOJIbLax ¢ aeneHueM. [loxydensr dop-
MYJIbI JUIsS HAXOXKJICHUS! KOPHEH MHOTIOYJICHOB, SBJISIOLIMXCS MPOU3BEICHUEM JIMHEHHBIX MHOXKMTENCH, o0o0maone 13-
BECTHbIC PE3yJIbTAThI IS KBATEPHUOHHBIX anreOp. Kak n3BecTHO, €ciii MUHUMAJIbHBII MHOTOYJIEH KJIacca CONPSKEHHOCTH A
B HEKOMMYTATHBHOM KOJIBLIE C JICJICHHEM SIBJISICTCA KBaJPAaTHYHBIM, TO JIIOOOW MHOTOWICH, UMEIONIMN J1Ba KOPHS B A,
OOHYJIeTCS TOKAECTBEHHO Ha A. B paboTe nokasaHo, 4To B ciIydae Kiacca CONpsKEHHOCTH C MUHUMAJIbHBIM MHOT'OUJICHOM
GoutbIlIei CTENEeHH CUTYAIMs IPUHIMITHAIBHO JipyTas. [Jys mo0oro Kiacca ConpsKEeHHOCTH C MUHUMAJIbHBIM MHOTOUJICHOM
CTEIeHH >2 MOCTPOCH KBAaAPaTUYHbIH MHOIOYJICH, MMEIOIINiT OECKOHEUHO MHOTI'O KOPHEH B 3TOM KJIacce, IIPH 3TOM B JaHHOM
KJIACCE CONPSIKEHHOCTU HMEETCs OECKOHEYHO MHOT'O JJIEMEHTOB, HE SIBJISIOIIMXCS KOPHSIMHU TaKOr0 MHOTOUJICHA.

Ku1roueBble ¢J10Ba: KOJIBLIO C J€ICHUEM, KOPHH MHOTOYJICHOB, aJire0pa KBaTEPHUOHOB, MUHUMAJIbHBIH MHOTOYJICH

Jast uutupoBanus. I'yrop, A. I. Kopuu muHorowieHoB ¢ kodpduuuentamu B koiblax c¢ aeiaenuem / A. I. T'ytop,
C. B. Tuxonos // doxx. Hau. akazn. nayk benapycu. — 2024. — T. 68, Ne 5. — C. 359-364. https://doi.org/10.29235/1561-8323-
2024-68-5-359-364

Introduction and preliminary results. In this paper, we study polynomials over division rings. Let
D be an associative division ring. Let also D[x] denote the polynomial ring in one variable x over D, where
x commutes elementwise with D. The coefficients of such polynomials may not commute with elements
of the ring. Polynomials in D[x] are added in the obvious way, and multiplied according to the rule
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(anxn 4+ -+ ao)(bmxm + -+ bO) = (cm+nxm+n + -+ CO)’

where ¢, = > ab ;. For references on polynomial rings over division rings, see [1, Ch. 5, §16; 2]. The
i+j=k
degree of P(x) € D[x] is defined in the usual way. For a polynomial

_ 1. ..
Px)y=ax"+a, x"'+ +ax+a, € Dx]
and an element @ € D, we define P(a) to be the element
...
aata, a"+ taa+ta,,

An element a € D is said to be a (right) root of P(x) if P(a) = 0. The noncommutative form of the
Remainder Theorem says that an element @ € D is a root of a nonzero polynomial P(x) iff x — a is a right
divisor of P(x) in D[x] (see, e. g., [1, Prop. 16.2]).

For a € D, the set

[a] :== {dad'|d € D\ {0}}
will be called the conjugacy class of a. The centralizer of a is defined as
Z(a) = {b € Dlab = baj}.

Over a field, a polynomial of degree n has at most n distinct roots. Over a division ring this is no
longer true, but by Gordon—Motzkin theorem [1, Th. 16.4], a polynomial of degree » in D[x] has roots
in at most n conjugacy classes of D, moreover, if P(x) = (x — a,)...(x — a,), where a,, ..., a, € D, then
any root of P(x) is conjugate to some a, Note that from P(x) = L(x)R(x) € D[x] it does not follow that
P(a) = L(a)R(a) (see Proposition below). In particular, if @ is a root of L(x), then a is not necessarily
a root of P(x).

The problem of finding the roots of a polynomial over a division ring has been investigated in ring
theory and applied mathematics. The most studied is the case of polynomials over Hamilton’s quaternion
algebra H. In analogy to field theory, the notion of a (right) algebraically closed division ring R is defined.
This is equivalent to saying that every polynomial in R[x] splits completely into a product of linear factors
in R[x]. By Niven—Jacobson theorem [1, Th. 16.14], the quaternion division algebra over a real-closed
field is algebraically closed. Baer’s theorem [1, Th. 16.15] says that noncommutative centrally finite
(right) algebraically closed division rings are precisely the division rings of quaternions over real-closed
fields. In [3], a formula was found for roots of any quadratic polynomial in H[x]. This formula was
generalized to any quaternion algebra in [4] and [5]. In [6], it was shown that the roots of any polynomial
in H[x] are roots of the real companion polynomial. In [7], it was presented an algorithm for finding
all roots of a polynomial in H[x] using the real companion polynomial. In [8], a few of these results
were generalized to the case of any central division algebra. Recall that a central division algebra is
a division algebra which is finite dimensional over its center. A complete method for finding the roots of
all polynomials over an octonion division algebra was described in [9].

In [10], it was presented the following explicit formula describing roots of a product of linear factors
in H[x].

Theorem1[10, Th. 4]. Let P(x) = (x — q,)...(x — q,), where q,, ..., q, € H. If the conjugacy classes
[g,] are distinct, then the polynomial P(x) has exactly n roots (, which are related to the elements q, as
follows:

Cr = P(q)gr(Pe(qi) k= 1,...,m,

Lifk =1,

(x— 91 )..(x— ql), otherwise

P.(x) :={

and Px (x) is the conjugate polynomial of P,(x).
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In theorem 9 below, we generalize this formula for the case of any division ring. This is the first aim
of this paper.

Let F be the center of a division ring D. If a is a root of a polynomial f(x) € F[x], then any element
from the conjugacy class [a] is a root of f{x). The conjugacy class 4 is called algebraic over F if one (and
hence all) of its elements is algebraic over F. If 4 is algebraic over F, then the minimal polynomial of 4
is, by definition, the minimal polynomial of any element from 4.

In the case of a quadratic minimal polynomial, there is the following

Theorem?2[l,Lm. 16.17]. Let D be a division ring with center F, and let A be a conjugacy class
of D which has a quadratic minimal polynomial A(x) over F. If P(x) € D|x] has two roots in A, then
P(x) € D[x]Mx) and P(x) vanishes identically on A.

This means that a polynomial over a quaternion division algebra may have two different types of
roots: isolated and spherical roots. A root g of P(x) is called spherical if ¢ is not central and for every
d € [q] we have P(d) = 0. A root ¢ is called isolated if the conjugacy class [¢] contains no other root of
P(x).

The second aim of this paper is to show that in the case of a conjugacy class with minimal polynomial
of bigger degree the situation is completely different. More precisely, we proved the following

Theorem3. Let D be a noncommutative division ring with the center F, a € D an algebraic over
F element with minimal polynomial Mx) of degree n > 2. Then there exists a quadratic polynomial
P(x) € D[x] such that

1. P(x) has infinitely many roots in the conjugacy class [a),

2. There are infinitely many elements in [a] which are not roots of P(x),

3. Mx) does not divide P(x).

In the proof of Theorem 3 we will use the following statements.

Theorem4[l, Th. 16.6]. Let D be a division ring with center F and A a conjugacy class of D which
is algebraic over F with minimal polynomial f (x) € F[x]. A polynomial P(x) € D|x] vanishes identically
on A iff P(x) € D|x] f (x).

TheoremS5[1, Th. 16.11; 2, Th. 4]. If a polynomial P(x) € D[x] has two distinct roots in a conju-
gacy class of D, then it has infinitely many roots in that class.

Proposition [l,Pr. 16.3]. Let D be a division ring and let P(x) = L(x)R(x) € D[x]. Let d € D be
such that h .= R(d) # 0. Then

P(d) = L(hdh R(d).

In particular, if d is a root of P(x) but not of R(x), then hdh™' is a root of L(x).

Proofof Theorem3. Leta € D be an element with minimal polynomial A(x) of degree n > 2.
Let also d € D be an element such that d does not commute with a. Let ¢ = dad
and b = (g — a)q(q — a)". Then g # a and g € [a]. By Proposition, g is a root of the polynomial
P(x) == (x — b)(x — a).

Since a is also a root of P(x), then by Theorem 5, P(x) has infinitely many roots in [«]. Moreover,
since the degree of A(x) is bigger than 2, then A(x) does not divide P(x). Hence by Theorem 4, P(x) does
not vanish identically on [a].

Suppose that far ' € [a] is not a root of P(x). This means that tar ' # a and

(tat' = a)tat \(tat ' —a) ' # b

by Proposition.
Note that
(tat' — a)tar \(tar ' — a) ' = (ta — at)a(ta — at)™".

Letz € Z(a), t,=t+zand q, =tat;'". Then

(4, ~ aq,(q, —a) ' = (hat;' —a)tat (hat' —a) ' =

=(t,a—at)a(t,a—at)"' =t +2)a—alt+2)a(t+2z)a—at+2)" = (ta — ab)a(ta — at) ' #b.
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Thus ¢, is not a root of P(x) by Proposition.

Now let z, € Z(a), z, # z. Note that the centralizer Z(a) is infinite by [2, Th. 3]. Let also ¢, = ¢ + z, and
q, =that, ' Then g, 1s also not a root of P(x).

Assume that g, = g,. Then

(t+zat+z)y'=@+z)at+z) ' & @t+z) t+2a=alt+z)'(t+z2) &
S (ttz)t+z,tz—z)a=alt+z)'(t+z,+(z—z)) e
Satt+z)'z—z)a=at+at+z)'z-z)e
Stt+z) z—z)a=alt+z)'z—z) e t+z) az—z)=alt+z)'z—z) e
o @ttz)la=at+z) ' ©alt+z)=({+z)ae at=ta

This gives a contradiction since ¢ does not commute with a. Then ¢, # g,. Hence any z € Z(a) defines
the element (¢ + z)a(t + z)"! € [a] which is not a root of P(x) and all such elements are distinct. Since the
centralizer Z(a) is infinite, then there are infinitely many elements in [a] which are not roots of P(x). O

Remark 1. In the notation of the proof of Theorem 3, let

b, = (tar* — aytat \(tat* — a)™".

The polynomials (x — b)(x — a) and (x — b,)(x — a) have infinitely many roots in the conjugacy class
[a], but a is the unique common root of these polynomials.

Roots of polynomials. It seems to us that the following lemma may be a known result, but we have
not found an exact reference. For the reader’s convenience, we provide a proof here.

Lemma. Let D be a division ring. Let also

PXx)=(x—d)....x —d,)),

where d,, ..., d, € D. If the conjugacy classes [d,] are distinct, then the polynomial P(x) has exactly n
roots and any root of P(x) is conjugate to some d..

P r o o f. By Gordon—Motzkin theorem [1, Th. 16.4], the roots of P(x) lie in n conjugacy classes of D
and any root of P(x) is conjugate to some d,. Let d € D be a root of P(x), then P(x) = L(x)(x — d) for some
L(x) € D[x]. By Proposition, all roots of P(x) different from d are conjugate to roots of L(x). Since the
conjugacy classes [d,] are distinct and deg(L(x)) = n — 1, then by Gordon—-Motzkin theorem, L(x) has no
roots in [d]. Thus P(x) has only one root in each conjugacy class. O

Theorem6. Let D be a division ring with center F. Let also

Px)=(x—d)....x = d,)),

whered,, ...,d, € D. Assume that d,, ...,d,_, are algebraic over F. Let also f(x) be the minimal polyno-

e 8y

mial ofd, i=1, ..., n — 1. If the conjugacy classes [d,] are distinct, then the polynomial P(x) has exactly
n zeros C, which are related to the elements d,_as follows:

Ck = Pk(dk)dk(Pk(dk))_l; k=1,....n,
B(x) ::{1’ =l

S, (x)...8,_,(x), otherwise,

where S(x) € D[x] is such that f(x) = S(x)(x —d),i=1,..,n— 1
Pro o f. Since S(x) has coefficients in the field F(d), then
J[,(x) = S,'(x)(x - d,) = (x - di)Si(X)
fori=1, ..., n— 1. Note that
PP (x)=(x—d)...x —d)S,(x)...S,_(x) = (x —d)....x = d)f,_,(x)...f,(x).

Since f,_,(x)...f,(x) € F[x], then d, is a root of the polynomial P(x)P (x). Note that fori=1, ..., k— 1,
d, ¢ [d], so d, is not a root of f(x) by Dickson’s Theorem [1, Th. 16.8]. Hence d, is not a root of f, ,(x)...
/,(x). Then d, is not a root of P,(x). Indeed,
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x—d_)..x—d)P(x)=(x—d,_)...x —d)S,x)...5,_,x) =f,_,x)...f,(x)

and if d, is a root of P,(x), then d, is a root of f,_,(x)...f,(x).

Hence by Proposition, P,(d,)d,(P,(d,)) " is a root of P(x) for k=1, ..., n. By Lemma, P(x) has no other
roots. O

In the notation of Theorem 6, we have the following

Corollary. Let D be a division ring with center F, d,, d, € D such that the conjugacy classes [d|]
and [d,] are distinct. Assume that d, is algebraic over F. Let also f(x) be the minimal polynomial of d,
and S(x) € D[x] such that f (x) = S(x)(x — d,). Then

(= dy)(x = d)) = (x = d)(x = S(d,)d,(S@) ),

where d = (d, — S(d,)d,(S(d,)) ")d,(d, — S(d)d(Sd,)) ™).

Proof Let P(x) := (x — d,)(x — d,). By Theorem 6, d, := S(d,)d,(S(d,))™" is a root of P(x). Then
x — d, is a right divisor of P(x) and P(x) = (x — d)(x — d,) for some d € D. Since d, is a root of P(x) and
d, # d,, then by Proposition,

d=(d, —dy)d\d,— d))" = (d, — S(d)d,(S(d,) d,(d, — S(d,)d,(Sd,)) )" o

Remark?2. The formula from the previous corollary allows to change the order of factors in products
of monic linear polynomials. This formula generalizes formulas for Hamilton s quaternion algebra from
[11, Lm. 1] (see also [10, Th.7]).

Example. Let F'be a field, char(F) # 2. Let also O be a quaternion division algebra over F.

Assume that d|, d, € O, [d|] # [d,]. If d, ¢ F then the minimal polynomial of d, is (x — d, )(x — d,),
where d, is the conjugate of d,. Hence in the notation of Corollary, S(x) = x — d, . Then

S(d,)dy(S(dy)) " = (dy — dy )dy(d, ~ d; )"

Simple computations show that

(d, — S(dy)dy(S)) N, (d, — S(dy)dy(Sdy) ) = (d, — dy )d,(dy — ;).
Thus
(= dy)(x — d,) = (x = hd i) x — hd,h™),

where h =d, — a’_1 (compare with the formula from [11, Lm. 1]).
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