2015 июль–август Том 59 № 4

УДК 621.315.592

С. Б. ЛАСТОВСКИЙ 1 , В. П. МАРКЕВИЧ 2 , член-корреспондент Ф. П. КОРШУНОВ 1 , А. С. ЯКУШЕВИЧ 1 , Л. И. МУРИН 1 , Л. Ф. МАКАРЕНКО 3

БИСТАБИЛЬНЫЕ ЦЕНТРЫ С ГЛУБОКИМИ УРОВНЯМИ В ОБЛУЧЕННЫХ КРИСТАЛЛАХ КРЕМНИЯ p-ТИПА

¹НПЦ НАН Беларуси по материаловедению, Минск, Беларусь lastov@ifttp.bas-net.by; korshun@ifttp.bas-net.by; yakushevich@ifttp.bas-net.by; murin@ifttp.bas-net.by

²Университет г. Манчестер, Англия

V.Markevich@manchester.ac.uk

³Белорусский государственный университет, Минск, Беларусь makleo@mail.ru

Методом нестационарной спектроскопии глубоких уровней (DLTS) исследованы электрически активные дефекты в кристаллах кремния p-типа, облученных быстрыми электронами и α -частицами. Обнаружен новый бистабильный радиационно-индуцированный центр с глубокими уровнями вблизи середины запрещенной зоны Si. Определены основные характеристики данного центра и высказаны предположения о его возможной природе.

Ключевые слова: кремний, быстрые электроны, DLTS, радиационно-индуцированные дефекты, глубокие уровни, бистабильность.

S. B. LASTOVSKII, V. P. MARKEVICH, F. P. KORSHUNOV, H. S. YAKUSHEVICH, L. I. MURIN, L. F. MAKARENKO

BISTABLE DEEP LEVEL CENTERS IN IRRADIATED p-TYPE SILICON CRYSTALS

¹Scientific and Practical Materials Research Centre of National Academy of Sciences of Belarus, Minsk, Belarus lastov@ifttp.bas-net.by; korshun@ifttp.bas-net.by; yakushevich@ifttp.bas-net.by; murin@ifttp.bas-net.by

²University of Manchester, Manchester, United Kingdom

V.Markevich@manchester.ac.uk

³Belarusian State University, Minsk, Belarus

makleo@mail.ru

Deep level transient spectroscopy (DLTS) has been used for studying the electrically active defects in *p*-type silicon crystals irradiated with fast electrons and α-particles. A new bistable radiation-induced center with deep levels around the midgap of silicon is revealed. The main characteristics of this center are determined and some suggestions on its origin are given. *Keywords*: silicon, fast electrons, DLTS, radiation-induced defects, deep levels, bistability.

Введение. Бистабильными принято считать дефекты, для которых существует две устойчивые конфигурации в решетке полупроводника. Как правило, в равновесных условиях в зависимости от положения уровня Ферми одна из конфигураций является энергетически более выгодной и является основной [1–3]. При изменении зарядового состояния центра вследствие захвата неравновесных (неосновных) носителей заряда возможен переход во вторую (метастабильную) конфигурацию [4; 5]. Обычно конфигурации разделены энергетическим барьером, что позволяет создавать и сохранять в течение длительного времени неравновесную заселенность метастабильного состояния даже в области комнатных температур. С повышением температуры, как правило, имеет место термически активируемый обратный переход из метастабильной в основную конфигурацию. При этом в области термической стабильности дефекта возможны многократные обратимые конфигурационные трансформации [1–5]. Так как электронные свойства дефекта в различных конфигурациях могут быть существенно различными, то, изменяя заселен-

ность состояний, можно влиять на электрические и оптические свойства полупроводника. Очевидно, что при изменении конфигурации дефекта в решетке в результате инжекции неосновных носителей заряда могут существенно измениться и параметры полупроводниковых приборов. В связи с этим возникает необходимость проведения детальных исследований природы и электронных свойств бистабильных дефектов в кремнии, который продолжает оставаться базовым материалом современной микроэлектроники. Поскольку в технологии изготовления быстродействующих кремниевых приборов широко используются радиационные методы [6], то значительный интерес представляет и исследование бистабильных радиационно-индуцированных центров в p-n-структурах на основе кремния.

К настоящему времени накоплен большой экспериментальный материал по свойствам радиационно-индуцированных центров (РИЦ) в кремнии, для ряда РИЦ определены параметры, выяснены механизмы образования и отжига некоторых центров. В то же время имеющаяся информация о бистабильных РИЦ в Si весьма ограничена. Достаточно хорошо изучены электронные свойства только таких центров, как вакансия, междоузельный атом бора и комплекс междоузельный углерод—узловой углерод [1–3]. Недавно была обнаружена бистабильность такого технологически важного дефекта, как тривакансия и определены ее электронные характеристики в различных конфигурациях [7; 8]. В настоящем сообщении дается информация об обнаружении в кремнии еще одного бистабильного радиационно-индуцированного центра (БРИЦ) с глубокими уровнями вблизи середины запрещенной зоны.

Материалы и методы исследования. Исследуемые образцы изготавливались на эпитаксиальном кремнии p-типа (легирующая примесь — бор с концентрацией $N_{\rm B} = 5 \cdot 10^{14}~{\rm cm}^{-3}$), выращенном на подложке КДБ-0,005. Толщина эпитаксиального слоя составляла около 33 мкм. P-n-переход формировался имплантацией фосфора в p-базу с последующим отжигом при 1420 К в атмосфере азота и кислорода. Глубина залегания p-n-перехода составляла 8-9 мкм, площадь — $6,25 \times 10^{-2}~{\rm cm}^2$. В качестве омических контактов напылялся слой алюминия толщиной 4,5 мкм.

Облучение n^+ –p-структур осуществлялось альфа-частицами с помощью источника с изотопами Pu^{239} (энергия альфа-частиц соответствовала 5,144 и 5,157 МэВ) в течение 300 мин. Поверхностная активность источника была около $2 \cdot 10^8$ Бк/см². Температура образцов в процессе облучения не превышала 290 К. Часть образцов облучалась также гамма-квантами 60 Со и быстрыми электронами с энергией 4–6 МэВ при комнатной температуре и при T=80 К. Отжиг облученных образцов в интервале температур 273–398 К проводился в криостате DLTS спектрометра, а при более высоких температурах отжига — в печи в атмосфере азота либо на воздухе.

Определение концентрации и электронных характеристик РИЦ (энергии активации эмиссии и сечения захвата носителей заряда) в базовой области n^+ –p-структур осуществлялось методами нестационарной спектроскопии глубоких уровней (DLTS) и Лаплас-DLTS спектроскопии с высоким разрешением (LDLTS) [9]. Спектры измерялись в диапазонах температур 77–400 (DLTS) и 40–300 (LDLTS) К в режимах заполнения ловушек как основными, так и неосновными носителями заряда.

Результаты и их обсуждение. На рис. 1 показаны типичные DLTS спектры для n^+ –p-диодов, которые были облучены альфа-частицами в течение 300 мин и отожжены при 100 °C в течение 30 мин. Термообработка при 100 °C использовалась для удаления из спектров нескольких незначительных по амплитуде DLTS-пиков, связанных с дырочными ловушками, которые нестабильны при температурах, незначительно превышающих 300 K, и их исследование не относится к цели данной работы. Спектры I и I на рис. 1, измеренные в режимах заполнения ловушек основными и неосновными носителями заряда после отжига, характерны для DLTS-спектров кристаллов Cz-Si:B, облученных как быстрыми электронами, так и альфа-частицами (см., напр., [7; 8; 10]). Для всех ловушек были определены электронные характеристики (энергия активации эмиссии для дырок (электронов) ($E_{h(e)}$) и предэкспоненциальный фактор (I0) из зависимостей Аррениуса скоростей эмиссии дырок (электронов), измеренных с использованием LDLTS. Сравнение полученных значений для дырочных ловушек, ответственных на спектре I за доминирующие пики

с максимумами при 125 К ($E_h = 0{,}192$ эВ, $\alpha = 7{,}4 \cdot 10^5$ с $^{-1}$ К $^{-2}$) и 201 К ($E_h = 0{,}360$ эВ, $\alpha = 4.0 \cdot 10^6 \,\mathrm{c}^{-1}\mathrm{K}^{-2}$), с известными литературными данными для радиационных дефектов в кристаллах Cz-Si:В позволяет соотнести их с эмиссией дырок из однократно положительно заряженных состояний дивакансии (V_2) и комплекса междоузельный углерод-междоузельный кислород (С,О,) соответственно [7; 8; 10]. Спектр 2 получен в режиме перезарядки ловушек неосновными носителями заряда. На нем наблюдается только один пик с минимумом при 130 К. Электронные характеристики соответствующей ему ловушки равны $E_e = 0.24$ эВ и $\alpha = 1 \cdot 10^7$ с⁻¹K⁻². Данная ловушка может быть связана с донорным уровнем комплекса междоузельный бор-междоузельный кислород (B_iO_i) [7; 8; 10].

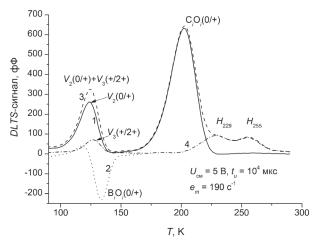


Рис. 1. Спектры DLTS эпитаксиальной n^+ –p-структуры, облученной альфа-частицами при $T=290~\rm K$ и отожженной при $100~\rm ^{\circ}C$ в течение $30~\rm M$ ин (спектры I и 2). Спектр $3~\rm ^{\circ}$ измерен после последующего пропускания прямого тока плотностью $4,8~\rm ^{\circ}A$ см 2 в течение $1~\rm ^{\circ}M$ ин при $300~\rm ^{\circ}K$. Спектр $4~\rm ^{\circ}C$ 00 соответствует разности спектров I и $3~\rm ^{\circ}M$

DLTS-спектр 3 на рис. 1 записан после пропускания через диодную n^+ –p-структуру прямого тока плотностью $4,8~\mathrm{A/cm^2}$ в течение 1 мин при $300~\mathrm{K}$. Как видно из представленных данных, инжекция неосновных носителей заряда в базовую p-область приводит к изменению вида DLTS спектра: увеличению амплитуды пика при $125~\mathrm{K}$ и появлению двух дополнительных пиков с максимумами амплитуд при $229~\mathrm{u}$ $255~\mathrm{K}$. Наблюдаемое изменение спектра в области низких температур вероятнее всего связано с трансформацией тривакансии V_3 из четырехкратно скоординированной конфигурации в метастабильную планарную (110) [7; 8]. В связи с этим увеличение амплитуды пика при $125~\mathrm{K}$ вызвано наложением амплитуд пиков V_3 (+/0) и V_2 (+/0), что хорошо видно из спектра 4, полученного вычитанием спектра $1~\mathrm{u}$ из 3. Появление на спектрах пиков H_{229} и H_{255} обусловлено эмиссией дырок с уровней ранее не наблюдавшихся РИЦ. Поскольку оба пика ведут себя совершенно идентично в процессе как инжекционных, так и термических обработок, то очевидно, что они оба обусловлены эмиссией дырок с уровней одного и того же метастабильного дефекта. Уровни данного дефекта

в электрически активной конфигурации являются более глубокими, чем уровень комплекса С,О, и расположены вблизи середины запрещенной зоны у E_V + 0,45 эВ и E_V + 0,54 эВ (рис. 2). Проведенные изохронный и изотермические отжиги показали, что трансформация из электрически активной конфигурации в нейтральную имеет место в области температур 50-100 °C и характеризуется энергией активации ~1,25 эВ и частотным фактором $\sim 5 \cdot 10^{15} \text{ c}^{-1}$ (рис. 3). Последующая инжекция неосновных носителей заряда в области комнатных температур переводит дефект опять в электрически активное состояние. Такие трансформации в результате термических и инжекционных обработок могут проводиться многократно без изменения концентрация дефекта, т. е. данный дефект является бистабильным центром. Обнаруженный БРИЦ от-

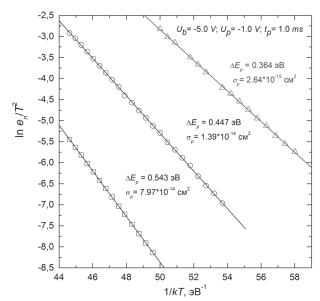


Рис. 2. Зависимости Аррениуса для скорости эмиссии дырок с донорного уровня комплекса C_iO_i и глубоких уровней метастабильного дефекта в кремнии p-типа

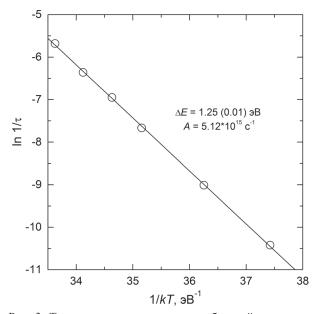


Рис. 3. Температурная зависимость обратной величины характеристического времени трансформации метастабильного дефекта в электрически неактивное состояние

жигается в области температур 170–230 °C, т. е. обладает довольно высокой термической стабильностью.

Некоторые характеристики обнаруженного нами бистабильного центра близки к таковым тривакансии [7; 8]. Оба дефекта могут находиться по крайней мере в двух конфигурациях, характеризующихся различным спектром энергетических уровней. При этом для перехода из одной конфигурации в другую достаточно провести инжекцию неосновных носителей заряда в базовую p-область n^+ -pструктур. Обратный переход (из метастабильной в основную конфигурацию) имеет место в процессе термического отжига в области температур 320-370 К и характеризуется энергией активации ~1,2-1,3 эВ и значением частотного фактора $\sim 10^{14} - 10^{15} \text{ c}^{-1}$ (рис. 3). Отжигаются оба центра в области температур 450-530 К.

В то же время имеется ряд существенных

отличий как по конкретным характеристикам обоих центров (например, положение уровней в запрещенной зоне), так и по условиям их формирования и отжига, а также проявления электрической активности в той или иной конфигурации. Очевидно, что природа этих центров различна. Идентифицировать обнаруженный бистабильный дефект на основании полученных экспериментальных данных пока достаточно сложно. Однако совокупность уже имеющихся результатов и их сопоставление с литературными данными позволяют высказать предположения о возможной природе данного дефекта.

Наиболее вероятно, что этот радиационно-индуцированный центр является дефектом междоузельного типа. Об этом свидетельствует заметное дообразование данного центра в области температур 350–370 K, в которой имеет место отжиг (диссоциация) комплексов I_2 О [11]. Кроме того, в области температур отжига БРИЦ (при $T \ge 480$ K) имеет место некоторое дообразование междоузельных комплексов C_i О $_i$, при этом увеличения концентрации вакансионно-кислородных комплексов не наблюдается.

Эффективность образования БРИЦ существенно зависит от энергии бомбардирующих частиц: при облучении гамма-квантами 60 Со концентрация БРИЦ не превышает 1–2 % от концентрации комплексов СіОі и сравнима с концентрацией дивакансий (в пределах погрешности эксперимента). При облучении быстрыми электронами ($E = 4-6 \text{ M} \rightarrow \text{B}$) и альфа-частицами относительная эффективность образования обнаруженного бистабильного центра по сравнению с $C_i O_i$ резко возрастает, особенно при $T_{\rm oбn}$ = 80 К. Это свидетельствует о том, что в формировании БРИЦ принимает участие не одиночный собственный междоузельный атом кремния I, а более сложный собственный дефект. Поскольку значения концентрации БРИЦ (амплитуды соответствующих пиков в спектрах DLTS) обычно находятся между таковыми для тривакансии и дивакансии, то логично предположить, что таким дефектом могут быть собственные ди-междоузлия Si (I_2) , эффективность образования которых как первичных дефектов, согласно экспериментальным данным и расчетам [12], находятся именно в данной области. Согласно литературным данным [12–14], собственные ди-междоузлия кремния обладают высокой миграционной способностью как единое целое и могут взаимодействовать с другими дефектами и примесями даже при температурах существенно ниже комнатной. Следует ожидать, что основными стоками для подвижных I_2 в кремнии p-типа, как и для собственных междоузельных атомов Si, являются примесные узловые атомы кислорода, углерода (C_s) и бора (B_s). Как уже отмечалось выше, комплекс I_2 О обладает относительно невысокой термической стабильностью и отжигается при $T\sim350$ К. При взаимодействии собственных междоузельных димеров Si с атомами C_s и B_s будут идти реакции $I_2+C_s\to IC_i$ и $I_2+B_s\to IB_i$. Достоверных данных об электронных свойствах и термической стабильности комплекса собственный междоузельный атом Si-междоузельный атом бора IB_i в литературе нет. Вероятнее всего, обнаруженный нами в кремнии p-типа метастабильный дефект с уровнями у $E_V+0,45$ эВ и $E_V+0,54$ эВ является комплексом собственный междоузельный атом Si-междоузельный атом углерода IC_i .

Во-первых, примесные атомы углерода присутствуют в значительных концентрациях практически во всех кристаллах кремния и вероятность образования этого комплекса очень высока (как и вероятность образования междоузельных атомов углерода C_i), во-вторых, термическая стабильность БРИЦ и комплекса IC_i [15] совпадают.

Для окончательной идентификации обнаруженного БРИЦ требуется проведение ряда дополнительных исследований, в том числе на кристаллах с различным относительным содержанием примесных атомов бора и углерода, облученных различными дозами быстрых электронов и/или альфа-частиц при различных температурах и т. д. Если высказанная нами гипотеза о природе данного центра подтвердится, то в результате проведенных исследований будет получена важная информация о природе такого фундаментального дефекта в кремнии, как собственный междоузельный димер.

Заключение. Таким образом, методом DLTS-спектроскопии в базовой p-области кремниевых диодных n^+ –p-структур, облученных высокоэнергетическими частицами, обнаружен новый радиационно-индуцированный дефект, обладающий свойствами бистабильных центров. После длительного хранения облученных образцов при комнатной температуре либо их кратковременного отжига при $T\sim 370~{\rm K}$ дефект не проявляет электрической активности в кремнии p-типа. В результате инжекции неосновных носителей заряда данный центр переходит в метастабильную конфигурацию с глубокими уровнями у $E_V+0,45~{\rm 3B}$ и $E_V+0,54~{\rm 3B}$. Обратный переход в основную конфигурацию имеет место в области температур $50-100~{\rm ^{\circ}C}$ и характеризуется энергией активации $\sim 1,25~{\rm 3B}$ и частотным фактором $\sim 5\cdot 10^{15}~{\rm c}^{-1}$. Предполагается, что данный дефект является комплексом собственный междоузельный атом кремния—междоузельный атом углерода IC_i .

Список использованной литературы

- 1. Chantre, A. Introduction to defect bistability / A. Chantre // Appl. Phys. A. 1989. Vol. 48. P. 3-9.
- 2. Watkins, G. D. Defect metastability and bistability / G. D. Watkins // Material Science Forum. 1989. Vol. 38-41. P. 39-50.
- 3. *Мукашев, Б. Н.* Метастабильные и бистабильные дефекты в кремнии / Б. Н. Мукашев, Х. А. Абдуллин, Ю. В. Горелкинский // УФН. 2000. Т. 43, № 2. С. 143–155.
- 4. *Makarenko*, *L. F.* Trapping of minority carriers in thermal U⁻-donors in *n*-Si / L. F. Makarenko, L. I. Murin // Phys. stat. sol. (b). 1988. Vol. B145, N 1. P. 241–253.
- 5. Watkins, G. D. Modification of defect structures by electronic excitation / G. D. Watkins // Reviews of Solid State Science. 1990. Vol. 4, N 3–4. P. 279–296.
- 6. *Коршунов, Ф. П.* Радиационная технология изготовления мощных полупроводниковых приборов / Ф. П. Коршунов, Ю. В. Богатырев // Весці НАН Беларусі. Сер. фіз.-тэхн. навук. 2008. № 4. С. 106–114.
- 7. Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon / V. P. Markevich [et al.] // Phys. stat. sol. (a). 2011. Vol. 208, N 3. P. 568–571.
- 8. The trivacancy and trivacancy-oxygen family of defects in silicon / V. P. Markevich [et al.] // Solid State Phenomena. 2014. Vol. 205–206. P. 181–190.
- 9. *Dobaczewski*, *L*. Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors / L. Dobaczewski, A. R. Peaker, B. K. Nielsen // J. Appl. Phys. 2004. Vol. 96, N 9. P. 4689–4728.
- 10. Forward current enhanced elimination of the radiation induced boron-oxygen complex in n^+-p diodes / L. F. Makarenko [et al.] // Phys. stat. sol. (a). -2014. Vol. 211, N 11. P. 2558-2562.
- 11. Complexes of the self-interstitial with oxygen in irradiated silicon: a new assignment of the 936 cm $^{-1}$ band / J. Hermansson [et al.] // Physica B: Condensed Matter. -2001. Vol. 302–303. P. 188–192.

- 12. Radiation damage in silicon exposed to high-energy protons / G. Davies [et al.] # Phys. Rev. B. -2006. Vol. 73, N 16. P. 165202 (1–10).
- 13. Self-interstitial clusters in silicon / R. Jones [et al.] // Nucl. Instrum. Methods Phys. Res. B. -2002. Vol. 186. P. 10-18.
- 14. *Posselt, M.* Atomistic study of the migration of di- and tri-interstitials in silicon / M. Posselt, F. Gao, D. Zwicker // Phys Rev. B. -2005. Vol. 71, N 24. P. 245202 (1–12).
- 15. Evolution of radiation-induced carbon-oxygen-related defects in silicon upon annealing: LVM studies / L. I. Murin [et al.] // Nucl. Instrum. Methods Phys. Res. B. -2006. Vol. 253. P. 210-213.

Поступило в редакцию 20.05.2015