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CLASSICAL SOLUTION OF THE CAUCHY PROBLEM FOR A SEMILINEAR WAVE
EQUATION WITH A DIRAC POTENTIAL

Abstract. For a one-dimensional semilinear wave equation with a free term that is a solution value at one given point
(a Dirac potential), we consider the Cauchy problem in the upper half-plane. We construct the solution using the method of
characteristics in implicit analytical form as a solution of some integral equations. The solvability of these equations, as well
the smoothness of their solutions, is studied. For the problem in question, we prove the uniqueness of the solution, and
establish the conditions under which its classical solution exists.
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KJACCHUYECKOE PEIIEHUE 3AJTAYY KOIIHW AJIS MOJAYJIAHEWHOIO BOJTHOBOT'O YPABHEHU SI
C IIOTEHIIUAJIOM JIJUPAKA

AHHOTaMs. /|71 0OTHOMEPHOTO MOTYIMHEHHOTO BOITHOBOTO YPAaBHEHHS CO CBOOOTHBIM UJICHOM, SBIISIONIMMCS 3HAYEHHEM
peleHus B OQHOH 3agaHHol Touke (moteHman Jupaka), paccmarpuBaercs 3aga4a Komu B BepxHell MOMyIiockocTy. Pemenne
CTPOHUTCS] METO/IOM XapaKTEPUCTHK B HESIBHOM aHATNTUIECKOM BHJIE KaK PEIIeHNEe HEKOTOPBIX HHTErPaIbHbIX ypaBHEeHHH. [Ipo-
BOANTCS MCCIIEIOBAHUE PA3PEHINMOCTH 3THX YPaBHEHHUH, a TakKe 3aBUCHMOCTH OT HAa4aJdbHBIX JAHHBIX U TIAJKOCTH UX pelle-
Hui. [lns paccMaTprBaeMoil 3a1aun JOKa3bIBAETCS €MHCTBEHHOCTD PEIICHUS U YCTaHABINBAIOTCS YCIOBHUS, IPH BHIIOTHEHUH
KOTOPBIX CYHIECTBYET €€ KIACCHUECKOE PEIICHHE.

KiioueBble c/10Ba: HEMHEITHOE BOTHOBOE ypaBHEHHE, 3aa4a Ko, MeTo1 XapakTepHCTHK, KIIACCHIECKOE PEIICHNE, Ha-
TPY’KEHHBIE CIIaracMble

Jas uutupoBanus. Kopsiok, B. 1. Knaccuueckoe pemenune 3amaun Komm A momyTnHEHHOTO BOJHOBOTO YpPaBHEHHS
¢ notenuanom upaka / B. U. Kopsiok, S. B. Pyneko // Joxnaasr HanmonansHoi akagemun Hayk benapycu. — 2025. — T. 69,
Ne 1. — C. 7-12. https://doi.org/10.29235/1561-8323-2025-69-1-7-12

Statement of the problem. In the domain Q = (0, ) x R of two independent variables (¢, x) € O ¢ R?,
for the nonlinear wave equation of the form

Du(ta X)_®(t, x)s(l‘o,xo)[u](ta X):f(t, X, u(ta X)), (tﬂ X)EQ, (1)
we consider the Cauchy problem with the initial conditions
u(0, x) = p(x), d,u(0, x) = y(x), xR, )
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where 0 =987 —a?62 is the d’Alembert operator (a >0 for definiteness); (¢g, x¢) is a point from the set Q;
(1, x,) 18 the Dirac delta distribution concentrated at the point (¢, xo) (i. €., d(1,, x)[#](Z, X) =u(to, X0) );
@ is a function given on the set Q; f'is a function given on the set O xR, and ¢ and \ are some real-
valued functions defined on the real axis.

Equations of the form (1) with an ordinary differential operator instead of the d’Alembert operator
were called as loaded in the paper [1]. In the articles [2; 3], equations of the form (1) were called
“equations with loaded summands”. Following [4], to refine the rather general concepts of “loaded
equations” and “equations with loaded summands”, we will use the specific term “equation with a Dirac
potential” for Eq. (1).

Previously, in the case of an unloaded equation, i. e., ® =0, we considered the problem (1), (2) in the
work [5—7]. In the linear case, i. e., f(¢, x, z) = f(¢, x), the problem (1), (2) was studied in the articles [8;
9]. Similar problems were also solved for other linear parabolic and hyperbolic equations [2; 3; 8—14].

Constructing the solution of the Cauchy problem. Introduce into consideration the operator K acting
by the formula

x+at

[ w®de+

—da

Kul(t, %)= o(x —at) ; o(x+at) N zl_a

t  x+a(t-1)

+§4¢rj (O(t, ulto, x0) + £ (1, s u(t, E)E, (1, x) €0

ay x—a(t—1)
In the closure Q of the domain O we consider the nonlinear integral equation
u(t, x) = K[ul(t,x), (t,x)€Q. 3

Theoreml. Let the conditions @eCl(Q), feC(OxR), (peCz(]R), and weCl(]R) be
satisfied. The function u belongs to the class C 2(Q) and satisfies Eq. (1) and the Cauchy conditions (2)
if and only if it is a continuous-differentiable solution of Eq. (3).

The proof can be carried out similarly to [6].

Remark 1. The condition ® Cl(é) of Theorem I can be replaced with

®ecC(0), [Q St x) - j@(r, xta(t—1))dte Rj e C(0).
0

R emark2. Ifthe function ® has the form O(t, x)=0(t) or O(t, x)=0(x), then the condition
®c CI(Q) of Theorem 1 can be replaced with © € C(Q).

The proof of Remarks 1 and 2 follows from [15, p. 142—143].

Let us introduce the set

Altp,xp)={(t,x):0<t<¢tp /\|x—xp|Sa|t—tp

}, treR, xpe(0,x),
and examine some properties of the operator K. Firstly, it is obvious that the operator

K:C(A(tp,xp))— C(A(tp, xp))

is well defined if (¢g, xo) € A(tp, xp). Secondly, there is an estimate

(Il cnromn 1@l mon )7 210 =2 ciuepnmy
2

provided that the function f'satisfies the Lipschitz condition with bounded function in the third variable

||K[u1] _K[”2]||C(A(tp,xp)) < )

L:A(tp,xp)>(t, x) > L(t, x) €[0, ),

|/ (t,x, 20) = f(t, x, 22)| S L(t, %) |21 — 22| 5)
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Hence, from Banach’s fixed point theorem, the obtained estimate (4) implies the solvability of Eq. (3)

inthe space C(A(tp, xp)) providedthe Lipschitzcondition (5)and (| )T 2.
Thus, if the following inequality holds

1
o < Pl Pl ) ”

we can construct a unique solution of Eq. (3) in the space C(A(¢g, xo9)). And, therefore, we define the
value ug =u(tg, xo) in a unique way. After this, the original problem (1), (2) is reduced to the Cauchy
problem for the telegraph equation with a nonlinear potential

ou(t, x)— O, x)ug = (¢, x,u(t, x)), (x)eQ, 7

with the initial conditions (2). The solution to the problem (7), (2) is known [6; 7]; it exists and is unique
under smoothness conditions!

|L||C(A(tp,xP)) + ||®||C(A(tp,XP))

feC(OxR), 9eC*(R), yeC'(R),

_ (_ t _ 8
®ecC(0), (Q S(t,x) [O(t,xta(t—1)dte R] e C(0), ®
0

and the Lipschitz condition (5), where L € L?,(Q). But the question arises: “Do the solution to the
problem (7), (2) solve the problem (1), (2)?”. The following assertion answers to this question.
A ssertion. Consider two coupled solvable equations

ov(t, x) — O, x)v(tg, xo) = f (¢, x,v(t, x)), (t,x)eQ, )

ou(t, x) — O, x)v(to, xo) = f (¢, x,u(t, x)), (¢, x)€0,
with the initial conditions
M(O, .X') = V(O, X) = ([)(X), atu(oa x) = 61“)(0, X) = W(X), X € R

Let the smoothness conditions (8) be satisfied. Then u =v.
Proof Let w=u—v. Then we have

ow(t, x)= f(t, x,u(t,x))— f(¢, x,v(t,x)), (,x)eQ, (10)
and
w(0, x)=0,w(0,x)=0, xelR. (11)
Using the mean value theorem, we can rewrite Eq. (10) as
ow(t, x) = A(t, x)w(t, x), (¢, x)e0, (12)
where

Mt x) = }az £t x, z=Eu(t, x) + (1 - E)(t, x))dE,
0

It is known [16] that the solution to the linear problem (11), (12) is unique. Hence w=0. It implies u =v.
The assertion is proved.

Thus, we have obtained a solution to the Cauchy problem (1), (2). We state the result as the following
assertion.

Theorem?2. Let the smoothness conditions (8), the Lipshitz condition (5), where L € L}, (0), and
the smallness condition of the quantity t, (6) be satisfied’. The Cauchy problem has a unique solution u in the
class C* (0).

The proof follows from Theorem 1 and the above argument.

! Existence and uniqueness theorems of the articles [6; 7] require continuous differentiability of the function @, but this
condition can be weakened like Remarks 1 and 2 of the present communication.
2 We do not explicitly note that the condition (6) also requires the finiteness of the quantity sup |L(t, x)|
(t, X)EA(tm xo)
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R emark3. The smallness condition (6) of Theorem 2 can be weakened to

I (lo(t.&)|+|L(x, &)])drde < 2a. (13)
A(t, x0)
The proof follows from the fact that the inequality (9) is a more precise criterion for the fact that the
mapping K : C(A(tg, x0)) = C(A(¢g, x¢)) is contraction.
Now, we will try to weaken the condition (13). We rewrite Eq. (3) in the form

Blul(t, x)=G(t,%), (1,x)€0,

where
1 x+at

[ w(®)dg, Blul(t, x)=Alul(t, x) + 4 [u](t, x),

—da

G(t, x) = o(x—at)+@(x+at) s
’ 2 2a
1 t x+a(t-1) 1 t x+a(t-1)
Alu](t, x) =u(, X)—Z—Idr [ fEu(re)de, Alult,x)=——][dt [ O(t,Eul(to, x)dE
ayg x—a(t-T) ay x—a(t-1)
The operators A:C(A(ty, x0)) = C(A(to, x9)), A; : C(A(tg, x0)) = C(A(tg, x0)) and

B:C(A(to, x0)) > C(A(29, xp)) are Lipschitz continuous, provided that the function f satisfies the
Lipschitz condition (5). The operator 4, is has a Lipschitz constant

1
Lga=— |[ |O(t,8)|drde
2 Ay x))
Since the operator A4 is continuously invertible [7], the operator B is continuously invertible if
Lp_4 <y [17], where

4l ] = 4021y a0

= inf
w1 Uy ”Ml _u2||C1(A(to,xo))

The value of y can be obtained as y = ¢ 'ifana priori estimate of the form

”u”Cl(A(tO,xo)) = c”G”Q(A(to,xo))
for the equation

Alu)(t, x) = G(t, x), (t,x)€Q (14)
is known. Let f(¢, x,0) =0. Then for the solution u of Eq. (14) we have
1 t x+a(t-7) _
|u(t, x)| < |G(t, x)| + Z_[dt _f |L(r, i)”u(t, x)| dg, (t,x)eQ.
0  x—a(t-1)

After applying the multidimensional Gronwall lemma [18] and taking the supremum, we get

]
”u||C1 (Alto, %)) < ||G||C1 (Ao, %0) exp[% ]

So, y= exp(—(za)’l ”L”Ll(A(lo,Xo)) ), and the inequality Lp_4 <y has the form

LeXpLi H |L(r,2’;)|d1:d§} ” |®(r,§)|drd<§£1.

2a 2a A(to, x0) A(tg, x0)

We note that the same result can be also obtained using the method of continuation with respect to
a parameter. We state the result as the following assertion.
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Theorem3. Let the smoothness conditions (8), the Lipshitz condition (5), where L e L} (0), the
trace condition f(t,x,0)=0, and the smallness condition of the quantity t (14) be satisfied. The Cauchy
problem has a unique solution u in the class C 2(Q).

Let us consider the following example.

E xample. Let us find the solution of the problem (1), (2) in the following case

flt,x,z)=z, o(x)=x, y(x)=0, O, x)=1, tozi, xo=1, a=1. (15)

Following our developed theory, we will look for a solution using the method of successive approxi-
mations. Take the initial approximation u¢(¢, x) = 0. Then every subsequent approximation will be cal-
culated by the formula

lt X+t—1T 1
um(t,x)=x+—fdr f (um_l(—,lj+um_1(r,§)]d§, meN.
20 xX—t+7T 4
We compute
ui(t, x)=x, us(t x)—£+x+t2—x us(t x)—£+i+x+t2—x+t4—x
B PR 20 32 24 2 24°
32712 17t S 2x t*x S
uq(t,x)= + + x4+ —+—+—,
6144 384 720 2 24 720
15702012 3271t*  17¢° 8 x t*x xS
us(t,x)= + + + +x+ —t—

X+— .
2949120 73728 11520 40320 2 24 720 40320

We can continue the calculations to find a closer approximation. However, note that the functions #,, can
be represented in the form u,,(¢, x)=U,(t) + xC,(t), where the function C, coincides with appro-
ximations of the hyperbolic cosine by the Maclaurin series. Therefore, we look for a solution to the
problem (1), (2), and (15) having the form

u(t, x)=U(t)+ xch(?). (16)

Substituting (16) into Eq. (1) and the Cauchy conditions (2), we obtain the Cauchy problem for the loaded
ordinary differential equation

Uy -U(t) - UG) =ch Gj U'(0)=U(0) =0. 17)

We can solve (17) and obtain
_ (I+exp(1/2))(1 —ch(t))

. (18)
1—4dexp(1/4) + exp(1/2)

u()

Thus, we have found the solution of the problem (1), (2) and (15), represented in the explicit analytical
form (16), (18). It is unique due to Theorem 2.

Non-uniqueness of the solution. Let us show that under some conditions the problem (1),
(2) has infinitely many global classical solutions. Indeed, let

f(, x, z)=|z

It is oblivious that that the problem (1), (2), (19) has the trivial solution #=0. Let us find nontrivial
solutions. Note that the problem (1), (2), (19) with ® =0, i. e., without the term O(Z, x)3,, x,)[u](t, x),
has a one-parameter family of solutions

* 0<o<l, =0, y=0, O, x) = O = const. (19)

0, 1€[0,s),

up(t—s,x), te[s,+o), (20)

U s (2, X) ={
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with parameter s >0 [19], where

1
up(t,x)=2°‘—1[

a+l

— 2
—ja_l fl_a.
a’-20+1

It means that the problem (1), (2), (19) has the one-parameter family of solutions (20) with parameter

S >1.

It should be noted that in this example (1), (2), (19) the function f does not satisfy the Lipschitz
condition and is not differentiable everywhere on the set of real numbers with respect to the third

variable.

Conclusions. In the present paper, we have obtained the necessary and sufficient conditions under
which there exists a unique classical solution of the initial value problem for the semilinear wave equation
with a Dirac potential. And we have proposed an approach to constructing solutions for equations with

Dirac potentials, even for nonlinear ones.
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