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Abstract. For a one-dimensional wave equation, we consider a mixed problem in a curvilinear half-strip. The initial
conditions have a first-kind discontinuity at one point. The mixed problem models the problem of a longitudinal impact
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KJACCHUYECKOE PENIEHUE CMEIITAHHOM 3A JAUHW B KPUBOJAHEWHOM MOJYIIOJOCE
JJ51 BOJIHOBOI'O YPABHEHMU S C PA3PBIBHBIMU HAYAJIBHBIMHU YCJIOBUAMHU

AHHOTanms. J{715 0ZTHOMEPHOTO BOJIHOBOTO ypaBHEHHUS pacCMaTPUBAETCs CMEIIaHHas 3a/lauya B KPUBOJIHHEIHOM moy-
nonoce. HauanbHele yClIOBUSI HMEIOT pa3pbiB MEPBOTO Pojia B 0HOM Touke. CMelTaHHas 3a7a4a MOJENUPYET 3ajady O Mpo-
JIONIBHOM YyJIape 10 KOHEYHOMY YNPYTOMY CTEPXHIO C MOJABHKHON rpaHuleil. Pelenne cTpouTcs METOIOM XapaKTepUCTUK
B IBHOM aHAJUTHYECKOM BHJIE. J|1s1 paccmaTprBaeMoil 3ajauu J0Ka3bIBAETCSl €AMHCTBEHHOCTh PENIEHUs M YCTAaHABINBAIOT-
Csl yCJIOBHSI, TIPH KOTOPBIX CYIIIECTBYET €€ KJIaCCUYECKOe PEeIleHHE.
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COIJIACOBAHMUS, YCIIOBHS COTPSIKEHUS, Pa3PbIBHBIC YCIOBUS, KPUBOJIMHEHHAs 001aCTh
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Statement of the problem. In the curvilinear domain Q ={(¢, x) :t € (0, ©) A x € (y(¢),/)}, where /

is a positive real number, of two independent variables (¢, x) € Oc R?, for the wave equation
(07 —a’0Du(t, x) = f(t,x), (t,x)€Q, )

we consider the following mixed problem with the initial conditions
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{0, x€[0,1),
u(0, x) = o(x), 0,u(0,x)=y(x)+ x€[0,1],
v, x=1,
(@)
and the boundary conditions
l/l(l, Y(t)) = H](f), (atz + bax)l/l(t, l) = ”’2(t)9 te [07 OO), (3)

where a, v, and b are real numbers, a > 0 for definiteness, f'is a function given on the set Q, ¢ and y are
some real-valued functions defined on the segment [0, /], and p, and p, are some real-valued functions
defined on the half-line [0, o). We also assume that

yeC([0,%0)), Y'(t) €(~a, a) forall 1€[0,), lim y(¢)*at =+, @
t—>+00

and that the curves x = y(f) and x = / do not intersect.

The mixed problem (1)—(3) models the following problem from the theory of longitudinal impact.
Suppose that an elastic finite homogeneous rod of constant cross-section, where the left moving bound-
ary x = y(?) is fixed, is subjected at the initial moment 7 = 0 to an impact at the end x =/ by a load that
sticks to the rod. Furthermore, we assume that an external volumetric force is applied to the rod, that
the displacements of the rod and the rate of their change at the initial moment ¢ = 0 are not equal to zero,
and that no shock waves present within the rod. Then, neglecting both the weight of the rod as a force and
its possible vertical displacements, the displacements u(z, x) of the rod satisfy the mixed problem (1)—(3),

where a = \/Ep_1 , b=SEM!, where E > 0 is Young’s modulus of the rod material, p > 0 is the density
of the rod material, S > 0 is the cross-sectional area of the rod, M > 0 is the mass of the impacting load,
—v is the velocity of the impacting load, p, is the external force applying to the end of the rod divided
by the mass of the impacting load. The quantity p,(#) has a physical meaning of the external force acting
on the end of the rod, p,(#) has a physical meaning of function that defines the movement of the end
x = 0 of the rod in the longitudinal direction, divided by the mass of the impacting load. The function f
is the external volumetric force divided by p.

In the case y(¢) =0, u, = 1, =0, @ =y =0, and /= 0, a unique generalized solution of the problem (1)—(3)
was obtained in the work [1], although the physical correctness of the solution was not proven. A similar
mixed problem, featuring a boundary condition (6t2 +b0, +c)u(t,1)=0 instead of (O 24+ bo u(t, =0,
was studied in the work [2], where once more a unique generalized solution was constructed and its
physical correctness was not established. In the case of smooth data, i. e., v =0, and a regular half-strip,
i. e., y = 0, the problem (1)—(3) has been studied using both Fourier series [3] and the method of charac-
teristics [4]. Similar problems in curvilinear domains have been considered in the works [5-7].

Curvilinear half-strip. Let us note some properties of the domain Q in which the problem is con-
sidered.

Assertion 1. Let (to, x0) € Q. Then the value xq+ atg is nonnegative under the conditions (4).

Assertion 2. Let ae[0,0). Then the equation y(t)+at=o has a unique solution under
the conditions (4).

Assertion3. Let a€(—0,0]. Then the equation y(t)—at=o. has a unique solution under
the conditions (4).

Assertion4. Let (to,xo)€Q. Then the curve (t,Y(t)) intersects the line x+at=xo + at
at a single point under the conditions (4).

Assertion5. Let (to,x0)€Q and xo—atyg <0. Then the curve (t,v(t)) intersects the line
x—at=xg—aty at a single point under the conditions (4).

The proofs of Assertions 1-5 are given in the article [7].

Consider the following functions

v+ :[0,0) ¢t y(t)+at, y_:[0,0)Dt > y(t)—at.
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We also need the inverse of the functions vy, and y_, which will be denoted by the symbols @, and
@ _, respectively, i. e., @, (y(¢)+at)=¢ and ®_(y(¢t)—at)=t¢. Such functions are guaranteed to exist
by Assertions 2 and 3. According to the inverse function theorem, we derive the formulas

| | ,, Y@ _(1)
O ()= D" ()= _ 1e[0, ),
=@ ) G@_@-ap O ©)
r 1 ” y”(CDJr(t))
()=, D ()= , 1[0, 00).
(t) @) t F@ i) €[0,) (6)

Note that the representations (5) and (6), along with condition (4), imply that @, is an increasing
function while @ _ is a decreasing function.
Auxiliary problem. Consider the following simple case

v=0. (7
The solution u of the problem (1)—(3), (7) has the form
u(t,x)=w(t,x)+g(x—at)+ p(x+at), ®)

where w is a particular solution of (I). We can take it from the paper [6], it satisfies the homogeneous
initial conditions

w(0, x)=0,w(0,x)=0, x<[0,]],

and belongs to the class C 2(Q) if, for example, f €C l(Q). Moreover, 6t2w(0, x)= (0, x) holds for all
xe[0,1].

So, we want to find closed-form expressions for the functions g and p. To do this, we partition the do-

main Q according to the following formulas (for clarity see Figure):

09 =0 {(t, x):x—ate[0,]]Anx+at €[0,]},
Q(I’O) =0nN{(t,x):x—ate[y_(n),0]Ax+at€[0,!]},
0D =0 {(t, x):x—atel0,[|Ax+at e[l,] +al;]},
0N =0n{(t,x):x—ate[y_(rn),y_(rio)lAx+at [l +al jy, 1 +al;]},

©)

where 1y =1y =0; l;i =1 +a_1(l—y(r,-_1)); rp=0, (l+aliy).
From the geometric considerations and Assertions 1-5, it is straightforward to demonstrate the cor-

rectness of the partitioning (9) of the domain Q.

A
(3, 7(r3))\ ____________ U, )
Q(3,2). T Tseezc” Q(2,3)
______ (2’2) .~......
2 Yrap\e=aeL e (G
oD TTiizeezll” 012
------- A TTeea
(r, Y222 oL ()
(10 "TiizeezzT .1
Q— —————— Q(OO)..."~.Q
0 g

Partitioning of the domain Q
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We will look for the function as a piecewise-defined, i. e.,

u(t, x)=u"(t,x), (t,x)e "7, (10)

Because of (8)—(10), we can write

ulh j)(t, x) =w(t, x)+g(i)(x—at)+p(j)(x+at), (t,x)e Q(i’j). (11)

We determine the functions g and p'® from the Cauchy conditions (2):

g<“><x>=¥—ﬁw<a)d§+cl, xel0,1], (12)
ay
PO ()=2 (x) Iw(i)dé C1. xef0,1], (13)

where C, is a real number. The function g” for i e N can be defined from the Dirichlet boundary condi-
tion (3) on the curve x =7(f). We substitute (11), where 9/ = 0™ "into (3) and obtain

w(t, Y(0) + gV () —a)+ p UV (y(0) + at) = (@), t€lria, nl, ieN.
Changing the variable z =y(f)—at, i. e., t = ®_(z), results in the equation
w(@_(2), Y (@ (2))+gV (@) + p V(@ (2) +a® _(2) = (P _(2)), D_(2)e[ri1,ri], ieN,
which we can solve to obtain
V@) =@ (2)-p" W@ _(2) +aD _(2) =D _(2), V(@ (2))), P(2) €[ri1, ], ieN. (14)

The function p’ for i e N can be defined from the boundary condition (3) on the line x = /. Again,
we substitute (11), where Q(i’j ) = Q(j L7 into (3) and get

azng(j_l)(l—at)+a2D2p(j)(l+at)+

+b(DgY V(1 = at)+ Dp YD (1 + at) + 0 ,w(t, D)) + 02 w(t, 1) = pa(2), (15)
te [ll'—l, li]) ] € N’

where D is the Newton—Leibniz operator. Changing the variable ¢ = a! (z—1) transforms (15) into

a*D?p Y (z)+bDp(z) = pz(—Z_l)—azng(j_l)(Zl—z)—
a

—ng(-f—D(zz_z)—baxv(z ! lj o7v (Z Ilj, 1)
a

a
zel[l+aliy,l+al;], jeN.

We solve (16) and obtain

/ ' A b(l+al;,|—
p(j)(z):p(ﬂ(]+alj,1+0)+ f exp((—i_a—len)jx
a

l+alj,1

% [Dp(j)(l+alj1+0)+ ? a_zexp(wj{uz(é—_lj—azng('i_l)(zl_g)_ (17)
a a

l+alj_1

(/ 1)(21 E)—bo, (& ! lj V(E, j}d&]dﬂ, ze[l+aljy,l+al;], jeN.
a a
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We choose the values p(j )(l +al; 1 +0) and Dp(j )(Z +al ;1 +0) in the representation (17) by con-
tinuity, 1. e.,

pP+alj+0)=pY (U +al;-0), DpP(+al;+0)=DpY V(I+al;-0), jeN. (18)
According to formulas (14), (17), and (18), the following relations hold for all i € N:

Ay =g "y () - gV (r-() = p V(v (7)) - pV(v+ (1)) =0,

At = Dg " (y-(1) - Dg (1) =~ L Dp D 1)) - Dp O - () =0,

V()
Ay =D y_(r) - DV (y(r) = %(Dz D)~ D2 p V- (),

A= p (U al) - pO (U +ali) =0, Ay =Dp V(I +aly) - Dp (1 +al;) =0,

=1

Ap=D>p " D(i+al)-D?pD(I+al;)= —D2g<">(1—al,-)+ng<"*1>(1—azl-)—

—iDg“)(z al)+ Dg(’ V(1 -al)).
a

By virtue of the expressions /; = r;_y +a (I —y(r;_1)) and 7: =@, (I +al;_) we have

~i 1 N2 ~i-l  ~i ~i-1 ~
A=Ay =AL =Ry =0, Ay =YD T R Ry ~LAY ien. (19)
(a—v'(r;)) a

The base of the recurrence relations (19) can be computed using the representations (12), (13), (15),
(17), and (18). So, after some simple calculations, we get

y(0) +7'(0)¢'(0) — 1 (0)
a—v'(0)
/:l 1 ’ ” " ’ n
Ag =8, =m((u1(0)—w(0))v (0)—a’¢"(0) +a*y'(0)9"(0) +7'(0) x
% (£(0,0)+2y'(0)y'(0) +7'(0)*@"(0) — uf (0)) -
~a(£ (0, 0)+2y'(0)y'(0) +¢'(0)y"(0) +Y'(0)> ¢"(0) — u7 (0)),

~0 ~0 0,1)—p2(0)+b¢'(0)+a’e"(l
A =po=0, AY=p, =0, Ap:pzz_f( ) — )ach() 0}

~0
A =80=11(0)-¢(0), Ag=3

B

(20)

The following assertion holds.
Assertion 6. Let the smoothness conditions

0 eC*([0,1]), e C'([0,1]), p1eC*([0,%)), pa € C([0,0)), 1€ C*([0,)), (1)
be satisfied. Then the functions g and p, defined by the formulas (12)—(14), (17), (18), and

g(2)=g"(2), ze[0,1], g(2)=g"(2), ®_(2) elri1, 1), ieN;

_ _ ) , (22)
p(Z)—p (Z)a ZG[O,I], p(Z)_p (Z)a ZE[I'F(JZ],],Z‘FGIJ'], ]EN>

are twice continuously differentiable if and only if the following matching conditions are satisfied

11(0)~(0) =0, 23)
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H1(0)—w(0) +7'(0)¢'(0) =0, @4
Hi(0)—(a® +(v'(0))¢"(0) - £(0,0) = 2Y'(0)y'(0) - Y"(0)¢'(0) =, (25)
12(0) = £(0,1) = b (0) —a’¢"(1) = 0. (26)

The proof follows from the formulas (12)—(14), (17)—(20).

Assertion 7 The functions g and p defined by the formulas (12)—(14), (17), (18), and (22)
are of the form g =g+Cy, p=p—Ci, where & and P are some functions not depending on the con-
stant C,.

The proof can be easily done by the method of mathematical induction (see, e. g., [8, p. 179]).

Theoreml. Let the smoothness conditions (21) and

fecko) @7)

be satisfied. The mixed problem (1)—(3), (7) has a unique solution in the class C 2(0) ifand only if the

matching conditions (23)—(26) are satisfied. This solution is determined by the formulas (10)—(14), (17), (18).
P r o o f. The existence of the solution follows from Assertions 6 and 7. The uniqueness of the solu-

tion follows from the construction and Assertion 7, as it has been derived from the general solution.

Main problem. Since in the general case Y € C 1([0,1]), the problem (1)—(3) has no solution be-
longing to the class C 2(Q), i. e., the problem (1)—(3) does not have a global classical solution defined
on the set Q. However, it is possible to define a classical solution on a smaller set O\T that will satisfy
Eq. (1) on the set O\T in the standard sense and some additional conjugation conditions on the set I'.

Definition. 4 function u is a classical solution of the problem (1)—(3) if it is representable
in the form u =uy +u,, where u, is a classical solution of the problem (1)—(3) with v = 0 and u, satisfies
Eq. (1) with f =0, the initial conditions u2(0,x) =0u3(0,x)=0, x€[0,I], the boundary conditions (3)
with w =W, =0, and the following matching conditions

[(u2)" = (u2) 1(t, x=v_(r;) +ar) =0, (28)

[(u2)" = (up) 1, x=1+al;—at)=0, i e {0} UN, (29)

D) — (B Nt x=1+al,—an=1" =042 N 30
[Qu2)" —(Ouz) 1(t,x=1+al;—at)= 0. i=1(mod2). ie{0}UN. (30)

Theorem 2. Let the smoothness conditions (21) and (27) be satisfied. The mixed problem (1)—(3)
has a unique solution in the sense of Definition if and only if the matching conditions (23)—(26)
are satisfied.

Proof. According to Theorem 1, under the smoothness conditions (21) and (27), the “smooth” part
of the solution, i. e., the function u, from Definition, exists and is unique if and only if the conditions
(23)—(26) are satisfied. The “discontinuous” part of the solution, i. e., the function #, from Definition,
can be defined by the formula

uy(t, x) = g (x—at) + p (x+at), (t,x)e 0", (31
where

2P =p(x)=0, xe[0,1], (32)

g (@) =-pIW@_(2)) +a®_(2)), D_(2) €[ri1, i), i €N, (33)
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pﬁj)(z)zpij_l)(l+al_,-_1—0)+ j exp[—b(1+alj_l_n)jx

I+al j1 a2
—1 .
i =1(mod 2)
< DpY V(1 +al,-0)+{* "/ -
{ v - 0, j=0(mod?2), (34)

(b(é,—z—all-_l)

- | atew 3 ](azngif1><21—a)+ngif”(21—<:))da}dn,

I+al j— a

zel[l+al;4,1+al;], jeN.

The formulas (31)—(34) can be derived analogously to (10)—(14), (17), (18). As in Theorem 1,
the uniqueness of the solution is followed by construction since we constructed it from the general solution.

Now, let us provide justification for the choice of the conjugation conditions (28)—(30) on the basis
of physical considerations. We derive the conditions (28) and (29) from the continuity. Therefore, we
only need to show the correctness of the condition (30). At the initial moment ¢ = 0, the rod is subjected
to an impact at the end x = /. It generates a shock wave that spreads along the characteristic x+at =1.
Its velocity must satisfy the following condition

[(Cu)" —@u) (t, x=1—at)=v.

For the derivation of the previous equality, we refer the reader to our paper [9]. Furthermore,
at the moment when the end point of the rod is reached, the wave is immediately reflected and propa-
gates along the characteristic with a speed that we do not set but which we can calculate as follows

_ a+vy'(n
(@)~ (@) )t x = y—(r) —aty =v L)
a—v'(n)
The interaction with the moving end of the rod changes its velocity. Furthermore, according to (30),
after reflecting from the end x =/ of the rod, this wave will travel with the velocity
[(Cu)" —@u) 1t, x=1+al,—at)=v.
However, since the wave propagates at the same speed in elastic rods, the condition y'(1) =0 must

be satisfied for the solution of the problem (1)—(3) to be correct in the sense of Definition. Following this
scheme, we prove the physical correctness of the condition

[(B)" — (@) 1(t, x=1+al; —at)=v, i=0(mod 2), i e {0} UN,

if y'(r;) =0 forall j=1(mod 2). Since the end x = 0 of the rod was not hit, shock waves should not prop-
agate along the characteristics x=1[/+al; —at and x=vy_(r,_)—at, where i=1(mod?2), i {0} UN.
It implies

[Ou)" —(©u) Nt,x=1+al;—at)=0, i=1(mod 2), i € {0} UN,
and
[Cu)" —(@u) 1(t,x=y_(r;))—at)=0, i=0(mod 2), i € {0} UN.

The latter can be verified by the formulas (31)—(34) and the fact that u; € C 2 (0). It brings us to the fol-
lowing statement.

A ssertion8. Let the conditions (21), (27), and (23)—(26) be satisfied. Then a solution of the problem
(1)—(3) in the sense of Definition is physically correct if the following condition

Y(r)=0, je{0}UN, j=1(mod2),

is satisfied.
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Conclusions. In the present paper, we have obtained the necessary and sufficient conditions under
which a unique classical solution of a mixed problem exists for the wave equation with discontinuous
conditions in a curvilinear half-strip. We have constructed the solution in an implicit analytical form.
We have proposed a method for constructing solutions to mixed problems for hyperbolic equations with

discontinuous conditions in curvilinear domains.
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