ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

MATEMATUKA MATHEMATICS

УДК 512.542 https://doi.org/10.29235/1561-8323-2025-69-5-359-366 Поступило в редакцию 30.07.2025 Received 30.07.2025

И. Н. Сафонова, В. В. Скрундь

Белорусский государственный университет, Минск, Республика Беларусь

МИНИМАЛЬНЫЕ τ -ЗАМКНУТЫЕ σ -ЛОКАЛЬНЫЕ НЕ \mathfrak{H} -ФОРМАЦИИ КОНЕЧНЫХ ГРУПП

(Представлено академиком Н. А. Изобовым)

Аннотация. Получено описание минимальных τ-замкнутых σ-локальных не \mathfrak{H} -формаций для произвольной σ-локальной формации \mathfrak{H} классического типа, т. е. σ-локальной формации, которая имеет такое σ-локальное определение, все неабелевы значения которого σ-локальные формации. Данный результат дает решение задачи Л. А. Шеметкова (1980 г.) об описании критических формаций в классе τ-замкнутых σ-локальных формаций, где σ – некоторое разбиение множества всех простых чисел, τ – произвольный подгрупповой функтор.

Ключевые слова: конечная группа, формационная σ -функция, σ -локальная формация, подгрупповой функтор, τ -замкнутая формация, критическая σ -локальная формация, формация классического типа

Для цитирования. Сафонова, И. Н. Минимальные τ -замкнутые σ -локальные не \mathfrak{H} -формации конечных групп / И. Н. Сафонова, В. В. Скрундь // Доклады Национальной академии наук Беларуси. -2025. - Т. 69, № 5. - С. 359–366. https://doi.org/10.29235/1561-8323-2025-69-5-359-366

Inna N. Safonova, Valentina V. Skrundz

Belarusian State University, Minsk, Republic of Belarus

MINIMAL τ-CLOSED σ-LOCAL NON-5,-FORMATIONS OF FINITE GROUPS

(Communicated by Academician Nikolay A. Izobov)

Abstract. A description of minimal τ -closed σ -local non- \mathfrak{H} -formations is obtained for an arbitrary σ -local formation \mathfrak{H} of classical type, i. e., a σ -local formation that has such a σ -local definition, all non-abelian values of which are σ -local formations. This result provides a solution to L. A. Shemetkov's problem (1980) on describing critical formations in the class of τ -closed σ -local formations, where σ is some partition of the set of all prime numbers, τ is an arbitrary subgroup functor.

Keyword: finite group, formation σ -function, σ -local formation, subgroup functor, τ -closed formation, critical σ -local formation, formation of classical type

For citation. Safonova I. N., Skrundz V. V. Minimal τ-closed σ-local non-H-formation of finite groups. *Doklady Natsional 'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2025, vol. 69, no. 5, pp. 359–366. https://doi.org/10.29235/1561-8323-2025-69-5-359-366

Введение. При изучении внутренней структуры и классификации локальных формаций важную роль играют минимальные локальные не \mathfrak{H} -формации [1] или \mathfrak{H}_l -критические формации [2], т. е. такие локальные формации $\mathfrak{F} \subseteq \mathfrak{H}$, все собственные локальные подформации которых содержатся в классе групп \mathfrak{H} . Общая проблема изучения критических формаций поставлена \mathfrak{H} . А. Шеметковым [1] на VI Всесоюзном симпозиуме по теории групп. Решению данной задачи в классе локальных формаций посвящен цикл работ А. Н. Скибы 1980–1993 гг. Наиболее общим и завершающим результатом построенной им теории стало описание \mathfrak{H}_l -критических формаций для

[©] Сафонова И. Н., Скрундь В. В., 2025

произвольной формации \mathfrak{H} классического типа [3] (формация \mathfrak{H} называется формацией классического типа, если она имеет такой локальный экран, все неабелевы значения которого локальны). Теории \mathfrak{H}_{J} -критических формаций широко использовались при изучении локальных формаций с заданной структурой подформаций, описании несократимых факторизаций локальных формаций, изучении полугрупп локальных формаций и др. [4; 5].

Развитие теории σ -локальных формаций привело к необходимости разработки методов теории критических формаций. Отметим, что задача Л. А. Шеметкова о классификации критических формаций в классе σ -локальных формаций решена в [6; 7] для произвольной σ -локальной формации $\mathfrak H$ классического типа.

При решении многих задач теории групп и их классов часто возникает необходимость рассматривать классы групп, замкнутые относительно заданных систем подгрупп согласованных с гомоморфизмами. Наиболее общий подход в этом направлении исследований был предложен А. Н. Скибой на основе понятия подгруппового функтора и функторно замкнутого класса групп.

Пусть каждой группе G сопоставлена некоторая система ее подгрупп $\tau(G)$. Тогда τ называется *подгрупповым функтором* (в смысле А. Н. Скибы [5, с. 16]), если выполняются условия: (1) $G \in \tau(G)$ для каждой группы G; (2) для любого эпиморфизма $\varphi: A \to B$ и для любых групп $H \in \tau(A)$ и $T \in \tau(B)$ имеем $H^{\varphi} \in \tau(B)$ и $T^{\varphi^{-1}} \in \tau(A)$.

Класс групп \mathfrak{F} называется τ -замкнутым, или функторно замкнутым, если $\tau(G) \subseteq \mathfrak{F}$ для любой группы $G \in \mathfrak{F}$. Подгруппу $A \in \tau(G)$ называют τ -подгруппой группы G.

Теория τ -замкнутых локальных формаций представлена в [5]. Ключевым инструментом при изучении внутренней структуры функторно замкнутых локальных формаций, а также их классификации стали \mathfrak{H}_{7}^{7} -критические формации.

В теории т-замкнутых σ -локальных формаций изучение $\mathfrak{H}_{\sigma}^{\tau}$ -критических формаций начато авторами в [8; 9], где доказан критерий для формаций такого вида и дано описание $\mathfrak{H}_{\sigma}^{\tau}$ -критических формаций для ряда конкретных классов групп \mathfrak{H} . При этом, следуя [1; 2], τ -замкнутую σ -локальную формацию \mathfrak{F} мы называем минимальной τ -замкнутой σ -локальной не \mathfrak{H} -формацией, или $\mathfrak{H}_{\sigma}^{\tau}$ -критической формацией, если $\mathfrak{F} \not\subseteq \mathfrak{H}$, но все ее собственные τ -замкнутые σ -локальные подформации содержатся в классе групп \mathfrak{H} .

В настоящем сообщении решена задача Л. А. Шеметкова (1980 г.) о классификации критических формаций в классе τ -замкнутых σ -локальных формаций, а также обобщены и развиты основные результаты работ [3; 5, гл. 2; 7] и др.

Основные определения и обозначения. Все рассматриваемые в работе группы предполагаются конечными. Основные определения, обозначения теории σ -свойств групп, а также теории σ -локальных формаций можно найти в [10–15]. Пусть $\sigma = \{\sigma_i \mid i \in I\}$ — некоторое разбиение множества всех простых чисел. Если n — целое число, G — группа и \mathfrak{F} — класс групп, то $\sigma(n)$ обозначает множество $\{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$; $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$.

Группа G называется [10] σ -примарной, если G является σ_i -группой для некоторого i; σ -нильпотентной, если G является прямым произведением σ -примарных групп; σ -разрешимой, если
каждый главный фактор группы G является σ -примарным. Класс всех σ -разрешимых групп
обозначают через \mathfrak{G}_{σ} , а через \mathfrak{N}_{σ} обозначают класс всех σ -нильпотентных групп.

Функция f вида $f: \sigma \to \{$ формации групп $\}$ называется формационной σ -функцией [11]. Для всякой формационной σ -функции f класс $LF_{\sigma}(f)$ определяется следующим образом:

$$LF_{\sigma}(f) = (G \mid G = 1 \text{ или } G \neq 1 \text{ и } G / O_{\sigma_i',\sigma_i}(G) \in f(\sigma_i)$$
 для всех $\sigma_i \in \sigma(G)$).

Если для некоторой формационной σ -функции f имеет место $\mathfrak{F} = LF_{\sigma}(f)$, то говорят, что формация \mathfrak{F} является σ -локальной, а f – σ -локальным определением формации \mathfrak{F} .

Пусть $\emptyset \neq \Pi \subseteq \sigma$. Тогда $\Pi' = \sigma \setminus \Pi$. Группу G называют Π -группой, если $\sigma(G) \subseteq \Pi$. Через \mathfrak{G}_{Π} обозначают класс всех Π -групп, а через \mathfrak{N}_{Π} — класс всех σ -нильпотентных Π -групп. В частности, если $\Pi = \{\sigma_i\}$, то \mathfrak{G}_{σ_i} — класс всех σ_i -групп, $\mathfrak{G}_{\sigma_i'}$ — класс всех σ_i' -групп.

Формационная σ -функция f называется τ -значной, если $f(\sigma_i) - \tau$ -замкнутая формация для каждого $\sigma_i \in \sigma(LF_{\sigma}(f))$; внутренней, если $f(\sigma_i) \subseteq LF_{\sigma}(f)$ для всех i; полной, если $f(\sigma_i) = \mathfrak{G}_{\sigma_i} f(\sigma_i)$ для всех i. Если F – полная внутренняя формационная σ -функция и $\mathfrak{F} = LF_{\sigma}(F)$, то F называют каноническим σ -локальным определением \mathfrak{F} .

Подгрупповой функтор τ называют [5]: *замкнутым*, если для любых двух групп G и $H \in \tau(G)$ имеет место $\tau(H) \subseteq \tau(G)$; *тривиальным*, если $\tau(G) = \{G\}$ для любой группы G.

На множестве всех подгрупповых функторов частичный порядок \leq вводят полагая, что $\tau_1 \leq \tau_2$, если $\tau_1(G) \subseteq \tau_2(G)$ для любой группы G [5]. Для любой совокупности подгрупповых функторов $\{\tau_j \mid j \in J\}$ их пересечение $\tau = \bigcap_{j \in J} \tau_j$ определяют следующим образом: $\tau(G) = \bigcap_{j \in J} \tau_j(G)$ для любых групп G. Если τ – произвольный подгрупповой функтор, то $\bar{\tau}$ – пересечение всех замкнутых подгрупповых функторов τ_i , для которых $\tau \leq \tau_i$, называют замыканием функтора τ [5].

Совокупность всех т-замкнутых σ -локальных формаций будем обозначать через l_{σ}^{τ} . Формации из l_{σ}^{τ} мы называем l_{σ}^{τ} -формациями. Для любого набора групп $\mathfrak X$ символ l_{σ}^{τ} обозначает l_{σ}^{τ} -формацию, порожденную $\mathfrak X$, т. е. пересечение всех l_{σ}^{τ} -формаций, содержащих $\mathfrak X$. Если $\mathfrak X = \{G\}$ для некоторой группы G, то l_{σ}^{τ} form G называют однопорожденной τ -замкнутой σ -ло-кальной формацией. Напомним также, что τ -замкнутую формацию, порожденную совокупностью групп $\mathfrak X$, обозначают символом τ form $\mathfrak X$.

 l_{σ}^{τ} -Формацию \mathfrak{F} называют неприводимой τ -замкнутой σ -локальной формацией, или l_{σ}^{τ} -неприводимой формацией, если $\mathfrak{F} \neq l_{\sigma}^{\tau}$ form $(\bigcup_{i \in I} \mathfrak{X}_i)$, где $\{\mathfrak{X}_i \mid i \in I\}$ — набор всех собственных l_{σ}^{τ} -подформаций из \mathfrak{F} . Если же найдутся такие собственные τ -замкнутые σ -локальные подформации \mathfrak{X} и \mathfrak{H} из \mathfrak{F} , что $\mathfrak{F} = l_{\sigma}^{\tau}$ form $(\mathfrak{X} \cup \mathfrak{H})$, то \mathfrak{F} называют приводимой τ -замкнутой σ -локальной формацией, или l_{σ}^{τ} -приводимой формацией.

Пусть $\{f_j \mid j \in J\}$ — некоторый набор τ -значных формационных σ -функций. Мы используем символ $\bigcap_{j \in J} f_j$ для обозначения формационной σ -функции h такой, что $h(\sigma_i) = \bigcap_{j \in J} f_j(\sigma_i)$. Если $\{f_j \mid j \in J\}$ — набор всех τ -значных σ -локальных определений формации \mathfrak{F} , то $f = \bigcap_{j \in J} f_j$ называют наименьшим τ -значным σ -локальным определением формации \mathfrak{F} .

Вспомогательные результаты. Доказательство основного результата базируется на следующих доказанных нами вспомогательных утверждениях.

Л е м м а 1. Пусть $\mathfrak{F} = LF_{\sigma}(F)$, где F – каноническое σ -локальное определение формации \mathfrak{F} и пусть \mathfrak{H} – такая непустая формация, что $\sigma(\mathfrak{H}) \subseteq \sigma(\mathfrak{F})$. Тогда формация $\mathfrak{F}\mathfrak{H} = LF_{\sigma}(H)$, где H – каноническое σ -локальное определение формации $\mathfrak{F}\mathfrak{H}$, при этом справедливы утверждения:

- 1) $H(\sigma_i) = F(\sigma_i)\mathfrak{H}$, $ecnu \ \sigma_i \in \sigma(\mathfrak{F})$;
- 2) $H(\sigma_i) = \emptyset$, $ecnu \ \sigma_i \notin \sigma(\mathfrak{F})$.

Доказательство леммы осуществляется с привлечением [12, лемма 2.1; 4, лемма 3.35].

 Π е м м а 2. Пусть $G=P \wr H=K \rtimes H-$ регулярное сплетение групп P и H, где P- неединичная σ_i -группа для некоторого $i \in I$, K- база сплетения G, а H- такая монолитическая группа G монолитом G, что G G G и

Д о к а з а т е л ь с т в о леммы основано на следующих результатах: [5, лемма 2.1.5]; [6, лемма 3.2]; [13, теорема 1.1, лемма 3.2, следствие 3.1]; [15, следствие 1.2].

 Π е м м а 3. Пусть \mathfrak{M} – непустая формация, $\emptyset \neq \Pi \subseteq \sigma$. Тогда каноническое σ -локальное определение H формации $\mathfrak{H} = \mathfrak{G}_{\Pi'}\mathfrak{N}_{\Pi}\mathfrak{M}$ такое, что $H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$ для всех $\sigma_i \in \Pi$ и $H(\sigma_i) = \mathfrak{H}$ для всех $\sigma_i \in \Pi'$.

Доказательство. Пусть $\mathfrak{F} = \mathfrak{G}_{\Pi'}\mathfrak{N}_{\Pi}$. Согласно [7, лемма 2.1(1)] формация $\mathfrak{G}_{\Pi'}$ имеет такое σ -локальное определение t, что $t(\sigma_i) = \mathfrak{G}_{\Pi'}$ при всех $\sigma_i \in \Pi'$ и $t(\sigma_i) = \emptyset$ при всех

 $\sigma_i \in \Pi$. При этом по [7, лемма 2.1(2)] формация \mathfrak{N}_Π имеет такое σ -локальное определение N, что $N(\sigma_i) = \mathfrak{G}_{\sigma_i}$ при всех $\sigma_i \in \Pi$ и $N(\sigma_i) = \emptyset$ при всех $\sigma_i \in \Pi'$. Ввиду [12, теорема 1.14(i)] формация \mathfrak{F} имеет такое σ -локальное определение f, что $f(\sigma_i) = \mathfrak{G}_{\Pi'}\mathfrak{N}_\Pi$ при всех $\sigma_i \in \Pi'$ и $f(\sigma_i) = \mathfrak{G}_{\sigma_i}$ при всех $\sigma_i \in \Pi'$ и $f(\sigma_i) = \mathfrak{G}_{\sigma_i}$ при всех $\sigma_i \in \Pi'$ и $f(\sigma_i) = \mathfrak{G}_{\sigma_i}$ имеет такое σ -локальное определение H, что $H(\sigma_i) = \mathfrak{G}_{\Pi'}\mathfrak{N}_\Pi\mathfrak{M}$, если $\sigma_i \in \Pi'$, и $H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M}$, если $\sigma_i \in \Pi$. Кроме того, поскольку $H(\sigma_i) = \mathfrak{G}_{\Pi'}\mathfrak{N}_\Pi\mathfrak{M} = \mathfrak{H}$ для всех $\sigma_i \in \Pi'$ и $H(\sigma_i) = \mathfrak{G}_{\sigma_i}\mathfrak{M} \subseteq \mathfrak{G}_{\Pi'}\mathfrak{N}_\Pi\mathfrak{M} = \mathfrak{H}$ для всех $\sigma_i \in \Pi'$, то σ -функция H является внутренней. Отметим также, что $H(\sigma_i) = \mathfrak{G}_{\sigma_i}H(\sigma_i)$ для всех $\sigma_i \in \Pi'$ следовательно, H – каноническое σ -локальное определение формации \mathfrak{H} . Лемма доказана.

 Π е м м а 4. Π усть A – монолитическая группа c не σ -примарным монолитом P, \mathfrak{X} – множество всех собственных τ -подгрупп группы A. Тогда $\mathfrak{F} = l_{\sigma}^{\tau}$ form $A - l_{\sigma}^{\tau}$ -неприводимая формация, u ее максимальная τ -замкнутая σ -локальная подформация \mathfrak{H} имеет такое внутреннее σ -локальное определение h, что $h(\sigma_i) = \tau$ form $(\mathfrak{X} \cup \{A/P\})$ для всех $\sigma_i \in \sigma(P)$, $h(\sigma_i) = \tau$ form $(A/O_{\sigma_i',\sigma_i}(A))$ для всех $\sigma_i \in \sigma(A) \setminus \sigma(P)$ и $h(\sigma_i) = \emptyset$ для всех $\sigma_i \notin \sigma(A)$.

Д о к а з а т е л ь с т в о. Пусть $\mathfrak{H}=LF_{\sigma}(h)$, где $h-\sigma$ -функция из условия леммы. Ввиду [12, лемма 2.1; 15, теорема 3.7] формация \mathfrak{H} является τ -замкнутой. Докажем, что $(\mathfrak{X}\cup\{A/P\})\subseteq\mathfrak{H}$. Пусть $G\in (\mathfrak{X}\cup\{A/P\})$, $\sigma_i\in\sigma(G)$. Тогда если $\sigma_i\in\sigma(P)$, то $h(\sigma_i)=\tau \text{form}(\mathfrak{X}\cup\{A/P\})$ и $G/O_{\sigma_{i'},\sigma_i}(G)\in h(\sigma_i)$. Пусть $\sigma_i\in\sigma(G)\setminus\sigma(P)$. Тогда поскольку $G\in\mathfrak{F}$, то $G/O_{\sigma_{i'},\sigma_i}(G)\in f(\sigma_i)$, где f наименьшее τ -значное σ -локальное определение формации \mathfrak{F} . По [13, теорема 1.1] имеем $f(\sigma_i)=\tau \text{form}(A/O_{\sigma_{i'},\sigma_i}(A))=h(\sigma_i)$. Поэтому $G/O_{\sigma_{i'},\sigma_i}(G)\in h(\sigma_i)$. Значит, $G/O_{\sigma_{i'},\sigma_i}(G)\in h(\sigma_i)$ для всех $\sigma_i\in\sigma(G)$. Следовательно, $G\in LF_{\sigma}(h)=\mathfrak{H}$. Значит, $(\mathfrak{X}\cup\{A/P\})\subseteq\mathfrak{H}$. Последнее означает, что $h(\sigma_i)=\tau \text{form}(\mathfrak{X}\cup\{A/P\})\subseteq\mathfrak{H}$ для всех $\sigma_i\in\sigma(P)$. Пусть $\sigma_i\in\sigma(A)\setminus\sigma(P)$. Тогда $P\subseteq O_{\sigma_{i'},\sigma_i}(A)$ и $A/O_{\sigma_{i'},\sigma_i}(A)$ — гомоморфный образ группы A/P. Поэтому $A/O_{\sigma_{i'},\sigma_i}(A)\subseteq\tau \text{form}(\mathfrak{X}\cup\{A/P\})\subseteq\mathfrak{H}$. Последнее влечет $h(\sigma_i)\subseteq\mathfrak{H}$. Отсюда получаем, что σ -функция h является внутренней.

Пусть \mathfrak{M} — произвольная собственная l_{σ}^{τ} -подформация из \mathfrak{F} , m — ее наименьшее τ -значное σ -локальное определение. Докажем, что $\mathfrak{M} \subseteq \mathfrak{H}$. По [13, следствие 3.1] имеем $m \leq f$. Ввиду [13, теорема 1.1] для всех $\sigma_i \in \sigma(A) \setminus \pi(P)$ имеет место $h(\sigma_i) = f(\sigma_i)$. Следовательно, для всех $\sigma_i \in \sigma(A) \setminus \pi(P)$ имеем $m(\sigma_i) \subseteq h(\sigma_i)$. Пусть $\sigma_i \in \sigma(P)$. Тогда поскольку P не σ -примарная группа, то $O_{\sigma_i',\sigma_i}(A) = 1$ и $f(\sigma_i) = \tau \text{form}(A/O_{\sigma_i',\sigma_i}(A)) = \tau \text{form}A$ в силу [13, теорема 1.1]. Если $f(\sigma_i) = m(\sigma_i)$, то $A \in m(\sigma_i)$. Но m — внутреннее σ -локальное определение \mathfrak{M} . Значит, $A \in \mathfrak{M}$. Поэтому $\mathfrak{F} = l_{\sigma}^{\tau} \text{form}A \subseteq \mathfrak{M} \subset \mathfrak{F}$. Следовательно, $\mathfrak{F} = \mathfrak{M}$. Последнее противоречит определению формации \mathfrak{M} . Значит, $m(\sigma_i) \subseteq f(\sigma_i)$. В силу [5, лемма 2.1.5] формация $f(\sigma_i) = \tau \text{form}A$ является τ -неприводимой и всякая ее собственная τ -подформация входит в $\tau \text{form}(\mathfrak{X} \cup \{A/P\}) = h(\sigma_i)$. Значит, $m(\sigma_i) \subseteq h(\sigma_i)$. Следовательно, $m \leq h$ и $\mathfrak{M} \subseteq \mathfrak{H}$.

По определению σ-функции h имеем $h(\sigma_i) \subseteq f(\sigma_i)$ для всех σ_i . Поэтому $\mathfrak{H} \subseteq \mathfrak{F}$. Если $\sigma_i \in \sigma(P)$, то $h(\sigma_i) = \tau$ form $(\mathfrak{X} \cup \{A/P\}) \subset f(\sigma_i)$. Значит, $l(\sigma_i) \subset f(\sigma_i)$, где l – наименьшее τ -значное σ -локальное определение \mathfrak{H} . Отсюда $\mathfrak{H} \subset \mathfrak{F}$. Из последнего следует, что $\mathfrak{F} - l_{\sigma}^{\tau}$ -неприводимая формация и \mathfrak{H} – ее единственная максимальная l_{σ}^{τ} -подформация. Лемма доказана.

 Π е м м а 5. Пусть $\mathfrak{M} - \sigma$ -локальная формация, $\mathfrak{H} = \mathfrak{G}_{\sigma_i} \mathfrak{G}_{\sigma_i} \mathfrak{M}$. Тогда \mathfrak{F} в том и только том случае является $\mathfrak{H}_{\sigma}^{\tau}$ -критической формацией, когда $\mathfrak{F} = l_{\sigma}^{\tau} \text{form} G$, где G – такая монолитическая $\overline{\tau}$ -минимальная не \mathfrak{H} -группа c монолитом $P = G^{\mathfrak{H}}$, что $\sigma_i \in \sigma(P)$, и либо P – не σ -примарная группа, а G – $\overline{\tau}$ -минимальная не ($\mathfrak{G}_{\sigma_i} \mathfrak{M}$)-группа c $P = G^{\mathfrak{G}_{\sigma_i} \mathfrak{M}}$, либо $G = P \rtimes H$, где $P = C_G(P)$ – P-группа, $P \in \sigma_i$, а H – такая монолитическая $\overline{\tau}$ -минимальная не ($\mathfrak{G}_{\sigma_i} \mathfrak{M}$) -группа C монолитом $C = H^{\mathfrak{G}_{\sigma_i} \mathfrak{M}}$, что $C \not\subseteq \Phi(H)$ и $C \in \sigma(Q)$.

Доказательство осуществляется с привлечением лемм 3 и 4, а также следующих известных результатов: [5, лемма 2.1.5, следствие 1.2.23], [6, теорема 3.1, лемма 3.2], [12, теорема 1.13, лемма 2.1], [13, теорема 1.1, лемма 3.2, следствие 3.1].

 Π е м м а 6. Пусть \mathfrak{M} – непустая абелева формация, $\mathfrak{H} = \mathfrak{G}_{\sigma_i} \mathfrak{G}_{\sigma_i} \mathfrak{M}$. Тогда \mathfrak{F} в том и только том случае является $\mathfrak{H}_{\sigma}^{\tau}$ -критической формацией, когда $\mathfrak{F} = l_{\sigma}^{\tau}$ formG, где G – такая монолити-

ческая $\bar{\tau}$ -минимальная не \mathfrak{H} -группа с монолитом $P=G^{\mathfrak{H}}$, что $\sigma_i \in \sigma(P)$, и либо $P=G^{\mathfrak{G}}\sigma_i^{\mathfrak{M}}$ – не σ -примарная группа и $G-\bar{\tau}$ -минимальная не $(\mathfrak{G}_{\sigma_i}\mathfrak{M})$ -группа, либо $G=P\rtimes H$, где $P=C_G(P)$ – p-группа, $p\in \sigma_i$, а H удовлетворяет одному из следующих условий: I) H – монолитическая $\bar{\tau}$ -минимальная не $(\mathfrak{G}_{\sigma_i}\mathfrak{M})$ -группа с таким монолитом $Q=H^{\mathfrak{G}_{\sigma_i}\mathfrak{M}}\not\subseteq \Phi(H)$, что $\sigma_i\not\in \sigma(Q)$; 2) H – минимальная не \mathfrak{M} -группа одного из следующих типов: а) группа кватернионов порядка g0, если g1, g2, g3 группа порядка g3 простой нечетной экспоненты g3, g4, g5, g6 иклическая g7-группа, g6, g7.

Д о к а з а т е л ь с т в о леммы базируется на леммах 2–5, а также следующих известных фактах: [4, лемма 8.12], [5, лемма 1.2.22, следствие 1.2.23, лемма 2.1.5, лемма 2.2.4], [6, теорема 3.1, лемма 3.2], [12, лемма 2.1], [13, теорема 1.1, лемма 3.2].

 Π е м м а 7. Пусть H – каноническое σ -локальное определение формации \mathfrak{H} и $G = P \rtimes K$ – монолитическая группа c монолитом $P = C_G(P) = O_p(G) = G^{\mathfrak{H}}$, $p \in \sigma_i \in \sigma$. Тогда G в том и только том случае является $\overline{\tau}$ -минимальной не \mathfrak{H} -группой, когда $K - \overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа.

Доказательство. Необходимость. Пусть $G-\bar{\tau}$ -минимальная не \mathfrak{H} -группа и $M\in \bar{\tau}(K)\setminus\{K\}$. Если при изоморфизме $G/P\simeq K$ подгруппе M в группе G/P соответствует подгруппа D/P, то $D\in \bar{\tau}(G)\setminus\{G\}$. Следовательно, $D\in \mathfrak{H}$. Поэтому $D/O_{\sigma_i',\sigma_i}(D)\in H(\sigma_i)$. Тогда поскольку $D=D\cap G=D\cap PK=P\rtimes (D\cap K)$, то $O_{\sigma_i',\sigma_i}(D)=O_{\sigma_i}(D)$. Кроме того, имеет место $O_{\sigma_i}(D)/P=O_{\sigma_i}(D/P)$. Значит, поскольку $D/O_{\sigma_i',\sigma_i}(D)\in H(\sigma_i)$, то $M/O_{\sigma_i}(M)\in H(\sigma_i)=\emptyset_{\sigma_i}H(\sigma_i)$. Поэтому $M\in H(\sigma_i)=\emptyset_{\sigma_i}H(\sigma_i)$. Таким образом, каждая собственная $\bar{\tau}$ -подгруппа группы K принадлежит $H(\sigma_i)$. Если при этом группа $K\in H(\sigma_i)$, то $K\in \mathfrak{H}$ ввиду [13, лемма 2.4]. Получаем противоречие. Следовательно, $K-\bar{\tau}$ -минимальная не $H(\sigma_i)$ -группа.

Д о с т а т о ч н о с т ь. Пусть $K - \overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа и $M \in \overline{\tau}(G) \setminus \{G\}$. Докажем, что $M \in \mathfrak{H}$. Если G = PM, то поскольку $P = C_G(P)$ — монолит группы G, имеет место равенство $M \cap P = 1$. Значит, $M \simeq M / P \cap M \simeq MP / P = G / P \in \mathfrak{H}$.

Допустим теперь, что $PM \not= G$. Тогда $PM/P \in \overline{\tau}(G/P) \setminus \{G/P\}$. Но $G/P \cong K$. Поэтому в K найдется такая собственная $\overline{\tau}$ -подгруппа D, что $MP/P \cong D \in H(\sigma_i)$. Следовательно, $M/M \cap P \cong MP/P \in H(\sigma_i)$. Значит, $M \in \mathfrak{G}_{\sigma_i}H(\sigma_i) = H(\sigma_i)$. Поэтому каждая собственная $\overline{\tau}$ -подгруппа из G принадлежит \mathfrak{H} . Так как по условию $P = G^{\mathfrak{H}}$, то $G - \overline{\tau}$ -минимальная не \mathfrak{H} -группа. Лемма доказана.

Основной результат. В данном разделе мы даем описание $\mathfrak{H}_{\sigma}^{\tau}$ -критических формаций, где τ – некоторый подгрупповой функтор, \mathfrak{H} – произвольная σ -локальная формация классического типа.

Теорем а. Пусть $\mathfrak{H} - \sigma$ -локальная формация классического типа и H – ее каноническое σ -локальное определение. Тогда \mathfrak{F} в том и только том случае является $\mathfrak{H}_{\sigma}^{\tau}$ -критической формацией, когда $\mathfrak{F} = l_{\sigma}^{\tau}$ form G, где G – такая монолитическая τ -минимальная не \mathfrak{H} -группа с монолитом $P = G^{\mathfrak{H}}$, что выполняется одно из следующих условий:

- 1) G = P такая простая σ_i -группа, что $\sigma_i \notin \sigma(\mathfrak{H})$ и $\tau(G) = \{1, G\}$;
- 2) P не σ -примарная группа и $G \overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа с $P = G^{H(\sigma_i)}$ для всех $\sigma_i \in \sigma(P)$;
- 3) $G = P \rtimes K$, где $P = C_G(P) p$ -группа, $p \in \sigma_i$, а K либо монолитическая τ -минимальная не $H(\sigma_i)$ -группа с монолитом $Q = K^{H(\sigma_i)} \not\subseteq \Phi(K)$, где $\sigma_i \notin \sigma(Q)$, либо минимальная не $H(\sigma_i)$ -группа одного из следующих типов: а) группа кватернионов порядка δ , если $\delta \notin \sigma_i$; б) экстраспециальная группа порядка $\delta \notin \sigma_i$ простой нечетной экспоненты $\delta \notin \sigma_i$.

Доказательства теоремы.

Не обходимость. В силу [12, лемма 2.1] имеем $\mathfrak{H} = (\bigcap_{\sigma_i \in \sigma(\mathfrak{H})} \mathfrak{G}_{\sigma_i} \mathfrak{G}_{\sigma_i} h(\sigma_i)) \cap \mathfrak{G}_{\sigma(\mathfrak{H})}$. Согласно условию теоремы \mathfrak{H} имеет такое σ -локальное определение h, все неабелевы значения которого σ -локальны. Без потери общности можно считать, что h – внутреннее σ -локальное опре-

деление \mathfrak{H} . Поскольку каждая собственная l_{σ}^{τ} -формация из \mathfrak{F} входит в \mathfrak{H} , но при этом $\mathfrak{F} \not\subseteq \mathfrak{H}$, то либо \mathfrak{F} — минимальная τ -замкнутая σ -локальная не $\mathfrak{G}_{\sigma(\mathfrak{H})}$ -формация, либо найдется такое $\sigma_i \in \sigma(\mathfrak{H})$, что \mathfrak{F} — минимальная τ -замкнутая σ -локальная не $(\mathfrak{G}_{\sigma_i},\mathfrak{G}_{\sigma_i}h(\sigma_i))$ -формация.

Если \mathfrak{F} является минимальной т-замкнутой σ -локальной не $\mathfrak{G}_{\sigma(\mathfrak{H})}$ -формацией, то в силу [9, теорема 4.1] имеем $\mathfrak{F} = \mathfrak{G}_{\sigma_i} = l_{\sigma}^{\tau}$ form G, где G — такая простая σ_i -группа, что $\sigma_i \notin \sigma(\mathfrak{H})$ и $\tau(G) = \{1, G\}$. Значит, формация \mathfrak{F} удовлетворяет условию 1) теоремы.

Пусть теперь $\sigma_i \in \sigma(\mathfrak{H})$ такое, что \mathfrak{F} — минимальная τ -замкнутая σ -локальная не $(\mathfrak{G}_{\sigma_i'}\mathfrak{G}_{\sigma_i}h(\sigma_i))$ -формация. Если формация $h(\sigma_i)$ — σ -локальна, то применяя [12, демма 2.1(5)], леммы 4, 5 и [13, следствие 3.1] имеем $\mathfrak{F}=l_{\sigma}^{\tau}\mathrm{form}G$, где G — такая монолитическая $\overline{\tau}$ -минимальная не \mathfrak{H} -группа с монолитом $P=G^{\mathfrak{H}}$, что $\sigma_i\in\sigma(P)$, и либо P — не σ -примарная группа и G — $\overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа с $P=G^{H(\sigma_i)}$ для всех $\sigma_i\in\sigma(P)$, либо $G=P\rtimes K$, где $P=C_G(P)$ — p-группа, $p\in\sigma_i$, а K — либо монолитическая $\overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа с монолитом $Q=K^{H(\sigma_i)}\not\subseteq\Phi(K)$ и $\sigma_i\not\in\sigma(Q)$. Значит, \mathfrak{F} удовлетворяет условию 2) или 3) теоремы.

Если $h(\sigma_i)$ – абелева формация, то используя леммы 4 и 1, а также [13, теорема 1.1] и [5, лемма 2.1.5] получаем, что $\mathfrak{F}=l_\sigma^\tau$ form G, где G – такая монолитическая $\overline{\tau}$ -минимальная не \mathfrak{H} -группа с монолитом $P=G^\mathfrak{H}$, что $\sigma_i\in\sigma(P)$, и либо $P=G^{H(\sigma_i)}$ – не σ -примарная группа и $G-\overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа, либо $G=P\rtimes K$, где $P=C_G(P)$ – p-группа, $p\in\sigma_i$, а K удовлетворяет одному из следующих условий: 1) K – монолитическая $\overline{\tau}$ -минимальная не $H(\sigma_i)$ -группа с таким монолитом $Q=H^{H(\sigma_i)}\not\subseteq\Phi(H)$, что $\sigma_i\not\in\sigma(Q)$; 2) H – минимальная не $H(\sigma_i)$ -группа одного из следующих типов: а) группа кватернионов порядка 8, если $2\not\in\sigma_i$; б) экстраспециальная группа порядка q^3 простой нечетной экспоненты $q\not\in\sigma_i$; в) циклическая q-группа, $q\not\in\sigma_i$. Следовательно, формация \mathfrak{F} удовлетворяет условию 2) или 3) теоремы.

Д о с т а т о ч н о с т ь. Ввиду [6, теорема 3.1] достаточно доказать, что $f(\sigma_j)$ является минимальной т-замкнутой не $H(\sigma_j)$ -формацией для всякого $\sigma_j \in \sigma(P)$, где f — наименьшее т-значное σ -локальное определение \mathfrak{F} . Применяя [6, лемма 3.2; 5, лемма 2.2.4; 4, лемма 8.12] мы доказываем, что $f(\sigma_j)$ является минимальной т-замкнутой не $H(\sigma_j)$ -формацией для всякого $\sigma_j \in \sigma(P)$, а значит, по [6, теорема 3.1] формация \mathfrak{F} является минимальной т-замкнутой σ -локальной не \mathfrak{H} -формацией. Теорема доказана.

В случае когда τ – тривиальный подгрупповой функтор из теоремы 3.8 получаем

В классическом случае, когда $\sigma = \sigma^1 = \{\{2\}, \{3\}, \{5\}, ...\}$ из теоремы получаем

С π е π с τ в π е 2 [5, теорема 2.2.10]. Пусть $\mathfrak{H} - \phi$ ормация классического типа π π π канонический экран. Тогда $\mathfrak{F} = \pi$ form π 0, где π 0 — такая монолитическая π 1 — минимальная не $\mathfrak{H} - \varphi$ 0 — торуппа π 1 с монолитом π 2 — π 3 с π 4 с π 4 с π 5 — группа π 4 с монолитом π 5 — π 5 с π 6 с π 6 — π 6 с π 7 — минимальная не π 6 с π 7 — по выполняется одно из следующих условий: π 1) π 3 с π 4 с π 5 с π 6 с π 6 с π 7 — π 6 с π 9 с π 7 с π 9 с π 9

Если при этом τ – тривиальный подгрупповой функтор из теоремы получаем

Благодарности. Исследования поддержаны Министерством образования Республики Беларусь (проект № 20211328).

Acknowledgements. Research was supported by the Ministry of Education of the Republic of Belarus (project no. 20211328).

Список использованных источников

- 1. Шеметков, Л. А. Экраны ступенчатых формаций / Л. А. Шеметков // Труды VI Всесоюзного симпозиума по теории групп. Киев, 1980. С. 37–50.
- 2. Скиба, А. Н. О критических формациях / А. Н. Скиба // Известия АН БССР. Серия физико-математических наук. -1980. -№ 4. -C. 27–33.
- 3. Скиба, А. Н. О критических формациях / А. Н. Скиба // Бесконечные группы и примыкающие алгебраические структуры. Киев, 1993. С. 258–268.
 - 4. Шеметков, Л. А. Формации алгебраических систем / Л. А. Шеметков, А. Н. Скиба. М., 1989. 257 с.
 - 5. Скиба, А. Н. Алгебра формаций / А. Н. Скиба. Mн., 1997. 239 с.
- 6. Сафонова, И. Н. О минимальных σ -локальных не \mathfrak{H} -формациях конечных групп / И. Н. Сафонова // Проблемы физики, математики и техники. -2020. -№ 4 (45). C. 105-112.
- 7. Сафонова, И. Н. О критических σ -локальных формациях конечных групп / И. Н. Сафонова // Труды Института математики. -2023. Т. 31, № 2. С. 63-80.
- 8. Сафонова, И. Н. К теории $\mathfrak{H}_{\sigma}^{\tau}$ -критических формаций конечных групп / И. Н. Сафонова, В. В. Скрундь // Международная конференция «Алгебра и динамические системы», посвященная 90-летию со дня рождения В. А. Белоногова, Нальчик, 3–7 июня 2025 г. Нальчик, 2025. С. 137–140.
- 9. Сафонова, И. Н. О $\mathfrak{H}_{\sigma}^{\tau}$ -критических формациях конечных групп / И. Н. Сафонова, В. В. Скрундь // Проблемы физики, математики и техники. 2025. № 3 (64). С. 99–111.
- 10. Skiba, A. N. On σ -subnormal and σ -permutable subgroups of finite groups / A. N. Skiba // Journal of Algebra. 2015. Vol. 436. P. 1–16. https://doi.org/10.1016/j.jalgebra.2015.04.010
- 11. Скиба, А. Н. Об одном обобщении локальных формаций / А. Н. Скиба // Проблемы физики, математики и техники. -2018. -№ 1 (34). C. 79–82.
- 12. Chi, Z. On n-multiply σ -local formations of finite groups / Z. Chi, V. G. Safonov, A. N. Skiba // Communications in Algebra. 2019. Vol. 47, N 3. P. 957–968. https://doi.org/10.1080/00927872.2018.1498875
- 13. Safonova, I. N. Some properties of *n*-multiply σ-local formations of finite groups / I. N. Safonova // Asian-European Journal of Mathematics. 2022. Vol. 15, N 7. Art. 2250138 (12 p.). https://doi.org/10.1142/s1793557122501388
- 14. Safonova, I. N. On the τ -closedness of *n*-multiply σ -local formation / I. N. Safonova // Advances in Group Theory and Applications. 2024. Vol. 18. P. 123–136.
- 15. Сафонова, И. Н. О *п*-кратной σ-локальности непустой τ-замкнутой формации конечных групп / И. Н. Сафонова // Труды Института математики НАН Беларуси. 2024. Т. 32, № 1. С. 31–37.

References

- 1. Shemetkov L. A. Screens of step formations. *Trudy VI Vsesoyuznogo simpoziuma po teorii grupp* [Proceedings of the VI All-Union Symposium on Group Theory]. Kyiv, 1980, pp. 37–50 (in Russian).
 - 2. Skiba A. N. On critical formations. Izvestiya AN BSSR, 1980, no. 4, pp. 27–33 (in Russian).
- 3. Skiba A. N. On critical formations. *Beskonechnye gruppy i primykayushchie algebraicheskie struktury* [Infinite Groups and Adjoining Algebraic Structures]. Kyiv, 1993, pp. 258–268 (in Russian).
 - 4. Shemetkov L. A., Skiba A. N. Formations of Algebraic Systems. Moscow, 1989. 257 p. (in Russian).
 - 5. Skiba A. N. Algebra of Formations. Minsk, 1997. 239 p. (in Russian).
- 6. Safonova I. N. On minimal σ -local non- \mathfrak{H} -formations of finite groups. *Problemy fiziki, matematiki i tekhniki = Problems of Physics, Mathematics and Technology*, 2020, no. 4 (45), pp. 105–112 (in Russian).
- 7. Safonova I. N. On critical σ -local formations of finite groups. *Trudy Instituta Matematiki* = *Proceedings of the Institute of Mathematics*, 2023, vol. 31, no. 2, pp. 63–80 (in Russian).

- 8. Safonova I. N., Skrund V. V. On the theory of $\mathfrak{H}^{\tau}_{\sigma}$ -critical formations of finite groups. *Mezhdunarodnaya konferentsiya* "Algebra i dinamicheskie sistemy", posvyashchennaya 90-letiyu so dnya rozhdeniya V. A. Belonogova, Nal'chik, 3–7 iyunya 2025 g. [International Conference "Algebra and Dynamical Systems" dedicated to the 90th anniversary of V. A. Belonogov, Nalchik, 3–7 June 2025]. Nalchik, 2025, pp. 137–140 (in Russian).
- 9. Safonova I. N., Skrundz V. V. On $\mathfrak{H}^{\tau}_{\sigma}$ -critical formations of finite groups. *Problemy fiziki, matematiki i tekhniki = Problems of Physics, Mathematics and Technology*, 2025, no. 3 (64), pp. 99–111 (in Russian).
- 10. Skiba A. N. On σ-subnormal and σ-permutable subgroups of finite groups. *Journal of Algebra*, 2015, vol. 436, pp. 1–16. https://doi.org/10.1016/j.jalgebra.2015.04.010
- 11. Skiba A. N. On one generalization of the local formations. *Problemy fiziki, matematiki i tekhniki = Problems of Physics, Mathematics and Technology*, 2018, no. 1 (34), pp. 79–82 (in Russian).
- 12. Chi Z., Safonov V. G., Skiba A. N. On *n*-multiply σ -local formations of finite groups. *Communications in Algebra*, 2019, vol. 47, no. 3, pp. 957–968. https://doi.org/10.1080/00927872.2018.1498875
- 13. Safonova I. N. Some properties of n-multiply σ -local formations of finite groups. *Asian-European Journal of Mathematics*, 2022, vol. 15, no. 7, art. 2250138 (12 p). https://doi.org/10.1142/s1793557122501388
- 14. Safonova I. N. On the τ -closedness of *n*-multiply σ -local formation. Advances in Group Theory and Applications, 2024, vol. 18, pp. 123–136.
- 15. Safonova I. N. On *n*-multiple σ -locality of a non-empty τ -closed formation of finite groups. *Trudy Instituta Matematiki NAN Belarusi = Proceedings of the Institute of Mathematics of the NAS of Belarus*, 2024, vol. 32, no. 1, pp. 32–38 (in Russian).

Информация об авторах

Сафонова Инна Николаевна — канд. физ.-мат. наук, доцент. Белорусский государственный университет (пр-т Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: in.safonova@mail.ru. ORCID: 0000-0001-6896-7208.

Скрундь Валентина Викторовна — аспирант. Белорусский государственный университет (пр-т Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: vallik@mail.ru.

Information about the authors

Safonova Inna N. – Ph. D. (Physics and Mathematics), Associate Professor. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: in.safonova@mail.ru. ORCID: 0000-0001-6896-7208.

Skrundz Valentina V. – Postgraduate Student. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: vallik@mail.ru.