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Аннотация. Предлагаются и исследуются компактные разностные схемы порядка аппроксимации 4 + 1 и 4 + 2 
на минимальных шаблонах для одномерного нестационарного квазилинейного уравнения теплопроводности, не тре
бующие итерационного процесса для их реализации. Вычислительный эффект достигается в результате распаралле-
ливания метода прогонки по четным и нечетным узлам. Получены условия монотонности и доказаны двусторонние 
оценки разностного решения и априорные оценки в равномерной норме. Приводятся также вычислительные экспе-
рименты, иллюстрирующие эффективность предложенных методов, а также их сходимость с соответствующим по-
рядком.
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Введение. Одной из актуальных задач современной вычислительной математики является 
разработка алгоритмов высокой точности, позволяющих проводить на современных ПЭВМ ма-
тематическое моделирование трехмерных задач с достаточно большим числом расчетных точек 
[1]. Среди многочисленных методов по данному направлению следует выделить так называемые 
компактные разностные схемы, которые позволяют существенно повысить точность алгоритмов 
без увеличения стандартного шаблона схемы, аппроксимирующего конкретное уравнение мате-
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матической физики. Среди наиболее важных исследований в данном направлении мы бы выде-
лили работу российского академика А. А. Самарского [2] и монографию [3], а также работы ав-
торов данной статьи [4–6].

До недавнего времени считалось невозможным обобщение компактных схем высокого по-
рядка на произвольные квазилинейные уравнения из-за необходимости определения шаблонных 
функционалов в нерасчетных точках [7]. Что касается построения компактных схем для квази-
линейных уравнений параболического типа, то при их построении теряется свойство консерва-
тивности, которое просто необходимо при моделировании прикладных задач с обобщенными 
решениями [8].

В настоящей работе предлагаются и исследуются компактные разностные схемы порядка ап-
проксимации 4 + 1 и 4 + 2 на минимальных шаблонах для одномерного нестационарного квази-
линейного уравнения теплопроводности, не требующие итерационного процесса для их реали-
зации. Вычислительный эффект достигается в результате распараллеливания метода прогонки 
по четным и нечетным узлам. Получены условия монотонности и доказаны двусторонние оцен-
ки разностного решения и априорные оценки в равномерной норме. Приводятся также вычисли-
тельные эксперименты, иллюстрирующие эффективность предложенных методов, а также их 
сходимость с соответствующим порядком.

Постановка задачи и разностная схема. В прямоугольнике [0, ], ,TQ T= Ω× Ω = Ω∪Γ  
{ }: 0x x lΩ = ≤ ≤  рассмотрим начально-краевую задачу для квазилинейного параболического 

уравнения 

	 ( , ), ( , , ) , 0 , 0 ,u uLu f x t Lu k x t u x l t T
t x x

∂ ∂ ∂ = + = < < < ≤ ∂ ∂ ∂ 
	 (1)

	 0 1 2( , 0) ( ), (0, ) ( ), ( , ) ( ),u x u x u t t u l t t= = µ = µ 	 (2)

1 20 ( , , )k k x t u k< ≤ ≤  для всех [0, ], .x l u∈ ∈
Как обычно, предполагаем, что классическое решение u(x, t) дифференциальной задачи (1), (2) 

существует, единственно и имеет все необходимые по ходу изложения производные в области .TQ
Введем равномерные сетки узлов с постоянными шагами h, τ соответственно по пространству 

и времени

	 0 0 0

, { , 0, , }, ,

{ , 0, , }, { 0}, .
h h h i h h h

n h h

x ih i N hN l

t n n N N T t
t t

t t t t t

ω = ω ×ω ω = = = = ω = ω ∪ γ

ω = = t = t = ω = ω ∪ = ω = ω ×ω

Множество граничных узлов обозначим { , 0, }.h ix ih i Nγ = = =
В работе используются обозначения из [9]. 
На равномерной сетке узлов, используя центральную разностную производную, дифферен-

циальную задачу (1), (2) аппроксимируем компактной разностной схемой порядка 4 + 1
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1 1
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, ,
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3
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 

 
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Использование центральной разностной производной связано с тем, что шаблонный функ­
ционал ai, предложенный в [2], содержит нерасчетную полуцелую точку  кото­
рая не применима для аппроксимации квазилинейных уравнений с коэффициентом k(x, t, u).

Идея реализации предложенной схемы описана в [7] и основана на расщеплении алгоритма по 
четным и нечетным узлам с последующим применением формул скалярной прогонки [10]. В слу­
чае четных узлов i = 2, 4, …, N – 2, N-четное, разностная схема (3), (4) приводится к каноническому 
виду трехточечных разностных уравнений на одном временном слое [10] 

	
1 1 1
2 2 , 2, 4, ..., 2,n n n n n n n

i i i i i i iA y C y B y F i N+ + +
− +− + = − = − 	 (5) 

	
1 1 1 1

0 1 2( ), ( )n n n n
Ny t y t+ + + += µ = µ 	 (6)

с коэффициентами

	
Отметим, что значения функции 1n

iy +  для всех четных узлов находятся независимо от значе­
ния той же функции в нечетных узлах.

Для нечетных i мы получаем аналогичную систему уравнений 

	 1 1 1
2 2 , 3, 5, ..., 3,n n n n n n n

i i i i i i iA y C y B y F i N+ + +
− +− + = − = − 	 (7)

граничные условия которой 1
1
ny +  и 1

1
n
Ny +
−  находятся при помощи интерполяционного многочлена 

Ньютона [11]

	
1 2 1 3 1

0 0 01 1
1 0 ( 1) ( 1)( 2),

1! 2! 3!

n n n
n n y y yy y q q q q q q

+ + +
+ + ∆ ∆ ∆
= + + − + − − 	 (8)
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N N
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−
∆ ∆ ∆

= + + + + + +      	 (9)

где 1 1 1
2

1 1, , .
2 2

n n n
i i iq q y y y+ + +

+= = − ∆ = −

Погрешность аппроксимации. Невязка ψ (погрешность аппроксимации на точном решении 
дифференциальной задачи) разностного уравнения (3) имеет вид 

	

2
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, ,
, ,

( ) , 2, 2.
3
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 

 

Используя формулу Тейлора, нетрудно получить представления 
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из которых следует соотношение

	

2
4( ) ( ).

3x x
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Учитывая, что 

	
ˆ( ) , ( ), ( ), ,t

u uL pLu L p pf u u u O u u O u
t t
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получим

	

2 2
1 4

,

2
1 4 4

( ) ( ) ( )
3 3

( ) ( ) ( ).
3

n
i t n

x x

n
i

h u hLu u L p pf a pu O h
t

hf L pf O h O h

+

+
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 
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
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

Найдем теперь погрешность аппроксимации в приграничных узлах. Остаточные слагаемые 
многочленов (8), (9) имеют вид соответственно 

	

4
4

1 0 64
( 1)( 2)( 3)( ) ( , ), [ , ],

4!
q q q q uR q h t x x

x
- - - ∂

= ξ ξ∈
∂

	

4
4

1 64
( 1)( 2)( 3)( ) ( , ), [ , ],

4!N N N
q q q q uR q h t x x

x
- -

+ + + ∂
= ξ ξ∈

∂

   



из которых видно, что они имеют четвертый порядок по пространству, т. е.

	 0 6 6

4 4
1 1 1 2 1 2

[ , ] [ , ]
max ( ) , max ( ) , , const 0.

N N
N

x x x x x x
R q M h R q M h M M

-
-

∈ ∈
≤ ≤ = >

Таким образом схема (3), (4) аппроксимирует задачу (1), (2) с порядком 4 + 1 на решении u(x, t) 
и для сеточной функции ψ имеет место оценка

	
4( ), const,C M h Mψ ≤ + t =

где как обычно max , max .
h hC Cx x∈ω ∈ω

⋅ = ⋅ ⋅ = ⋅ 	
Двусторонние и априорные оценки. В соответствии с [10] разностная схема (3), (4) будет 

монотонной, если выполнены условия принципа максимума

	 0, 0, 0,n n n n n n
i i i i i iA B D C A B> > = - - >

т. е. при 

	
2

1
.

3
h
k

t >  	 (10)

В дальнейшем нам понадобится следующее утверждение.
Л е м м а. Пусть выполнено условие положительности коэффициентов (10). Тогда для реше-

ния задачи (5), (6) в четных узлах i = 2, 4, …, N – 2, имеет место двусторонняя оценка

	
Доказательство леммы проводится аналогично утверждениям [12; 13].
Используя индукцию по n получаем двустороннюю оценку вида 

	
где 

{ } { }
{ }

0 0

0

1
1 1 1 2 1 0 1 1
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1
2 1 1 2 1 0 1
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min min { ( ), ( )}, min ( ) min 0, min min ( , ) ,
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n
n n i n i n

n N i N n N i N

n
n n i n

n N i N n

m t t u x t f x t

m t t u x t

+
+ + + +

= - = = - =

+
+ + +

= - = =

= µ µ +

= µ µ + { }
0

1
,1,..., 1 0,2,...,

max ( , ) .i n
N i N

f x t +
- =

Рассмотрим теперь задачу (7)–(9) для нечетных i.
В силу леммы при выполнении условия (10) получим двустороннюю оценку

	

{ }
{ }

1 1 1 1
1 1
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1 1 1
1 1
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min min{ , }, min ( )

max max{ , }, max ( ) .
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N i i i
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n n n n
N i i

i N

y y y f y

y y y f

+ + + +
-

= -

+ + +
-
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+ t ≤ ≤
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 (11)
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Так как

	

	
и используя индукцию по n, из (11) получим двустороннюю оценку без предположения на знако-
определенность входных данных для нечетных узлов

	
где 

	

{ }
{ }

0

0

1 1 1
3 0

0,1,..., 1 0,2,4,6 6, 4, 2, 1,3,..., 1

1 1
0,1,..., 1 1,3,..., 1

min min min , min , min ( )

min 0, min min ( , ) ,

n n n
i i i

n N i i N N N N i N

n i n
n N i N

m c y y u x

t f x t

+ + +

= - = = - - - = -

+ +
= - = -

 = + 
 

+

	

{ }
{ }

0

0

1 1 1
4 0

0,1,..., 1 0,2,4,6 6, 4, 2, 1,3,..., 1

1 1
0,1,..., 1 1,3,..., 1

max max max , max , max ( )

max 0, max max ( , ) .

n n n
i i i

n N i i N N N N i N

n i n
n N i N

m c y y u x

t f x t

+ + +

= - = = - - - = -

+ +
= - = -

 = + 
 

+

С л е д с т в и е. Пусть выполнены условия леммы. Тогда для решения разностной схемы (3), 
(4) имеет место оценка в сеточном аналоге нормы C

	
З а м е ч а н и е. Аналогично строится компактная схема 4 + 2

	

11 12
1 1 22 2, ,

, ,
,

1 1 , 2, 2,
2 2 3

n nn n n n
t n t n i

x xx i x i
x x i

hy a y a y a p y i N
++ ++ +

        = + - + j = -            
 

 





где шаблонный функционал j определяется следующим образом:

	

1 2 2
1 1 1 12

, ,

1 1( ( ) ) ( ( ) ) .
2 3 2 3

n n n n n n n n n
i ii

x x i x x i

h hf a p f f a p f
+ + + + +   

j = + + +      
   

   

Численные расчеты. В данном разделе приводятся результаты вычислительного эксперимен-
та, полученные при помощи разностной схемы (3), (4), аппроксимирующей краевую задачу (1), (2). 
Входные данные при k(u) = u2 определяются из точного решения u(x, t) = ex+t(x + 1)2 при l = 1.

Порядок сходимости по временной и пространственной переменным в нормах C и L2 опреде-
ляем по правилу Рунге [14]

	
2 24

( , ) ( , )
log , log .

( , / 2)( / 2, / 2 )
h z h z h

p p
z hz h

tt t
= =

tt

В табл. 1, 2 отражены скорости сходимости приближенного решения к точному.

Т а б л и ц а 1. Скорость сходимости по пространственному направлению

T a b l e 1. Convergence rate in the spatial direction

h = 0,1 τ = 0,1 pC 2Lz 2Lp

h τ 0,0760 – 0,0564 –
h / 2 τ / 24 0,0049 3,9551 0,0036 3,9696
h / 4 τ / 44 3,07·10–4 3,9964 2,27·10–4 3,9872
h / 8 τ / 84 1,92·10–5 3,9990 1,41·10–5 4,0089
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Т а б л и ц а 2. Скорость сходимости по временному направлению

T a b l e 2. Convergence rate in the time direction

h = 1 / 1000 τ = 1 / 100 pC 2Lz 2Lp

h τ 0,0078 – 0,0057 –
h τ / 2 0,0039 1,0001 0,0029 0,9749
h τ / 4 0,0019 1,0374 0,0014 1,0506
h τ / 8 0,00098 0,9551 0,00072 0,9593
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