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Аннотация. С помощью эталонного набора данных CASF-2016 осуществлен сравнительный анализ эффектив-
ности оценочных функций AutoDock Vina, NNScore2, RF-Score-4, CENsible, HGScore, OnionNet-2, PIGNet2 и PLANET, 
предназначенных для предсказания на основе данных молекулярного докинга аффинности связывания малых молекул 
с целевым белком. В результате проведенных исследований показано, что новые оценочные функции глубокого обу-
чения PLANET и OnionNet-2 демонстрируют наиболее высокую точность, эффективно прогнозируя сродство лиган-
да к молекулярной мишени и увеличивая достоверность идентификации молекул-кандидатов с высоким потенциа-
лом ингибиторной активности. Полученные данные показывают, что PLANET и OnionNet-2 могут быть использованы 
в вычислительных протоколах молекулярного докинга для последующего расчета экспоненциального консенсусного 
ранга для каждого лиганда и надежного отбора наиболее вероятных ингибиторов заданной терапевтической мишени.
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Введение. В настоящее время компьютерный дизайн лекарств является эффективным ин-
струментом в фармацевтических технологиях, позволяющим значительно сократить время и за-
траты, необходимые для разработки новых терапевтических средств [1]. Важную роль в  ком-
пьютерном скрининге лекарств играет молекулярный докинг, который широко используется для 
предсказания пространственной структуры комплекса лиганд/белок и наиболее выгодной ори-
ентации лиганда в целевом белке, оценки энергии связывания и исследования профиля взаимо-
действия молекул-кандидатов в лекарственные средства с терапевтической мишенью [2]. Для 
сканирования конформационного пространства активного центра белка-рецептора в програм-
мах молекулярного докинга используются алгоритмы конформационного поиска, а для расчета 
свободной энергии связывания – оценочные функции [2]. При этом важнейшим критерием эф-
фективности программ молекулярного докинга является возможность оценивать и ранжировать 
конформации лиганда, предсказанные алгоритмом конформационного поиска [3]. Это означает, 
что эти программы должны не просто генерировать правильные конформации молекул, но 
и уметь распознавать их среди набора сгенерированных вариантов и различать активные и слу-
чайные соединения.

Виртуальный скрининг, основная цель которого заключается в идентификации новых хими-
ческих структур, которые прочно связываются с конкретной мишенью, включает в себя набор 
вычислительных методов, способных использовать большие химические базы данных с целью 
корректного выбора наиболее вероятных кандидатов в лекарственные препараты для конкрет-
ных фармакологических мишеней [4]. Несмотря на свой огромный потенциал и широкое исполь-
зование, этот метод имеет ряд ограничений, влияющих на точность и, как следствие, практиче-
скую применимость его выводов [4]. Одна из основных проблем метода виртуального скрининга 
возникает из-за большого количества ложноположительных результатов, приводящих к отбору 
в качестве потенциальных кандидатов молекул, которые ошибочно предполагаются в результате 
докинга как прочно связывающиеся с молекулярной мишенью [5]. Еще более серьезная пробле-
ма возникает из-за большого количества ложноотрицательных результатов, имеющих место в слу-
чаях, когда оценочная функция не способна идентифицировать молекулы как сильные лиганды, 
несмотря на их высокое сродство к молекулярной мишени [5]. Фактически, в то время как пер-
вые молекулы могут быть легко отброшены в предварительных экспериментальных исследова-
ниях с относительно небольшими затратами, вторые никогда не достигают этой стадии, остава-
ясь инкогнито среди миллионов соединений, несмотря на их иногда высокую потенциальную 
фармакологическую ценность. Обе эти проблемы возникают из-за несовершенства имеющихся 
в настоящее время оценочных функций. Хотя улучшить математическое описание оценочной 
функции для получения более точных результатов несложно, важно учитывать, что они предна-
значены для обеспечения быстрой оценки свободной энергии связывания лиганда с белком для 
большого числа молекул.

Значительное улучшение вычислительной мощности и алгоритмического обеспечения по-
зволило существенно повысить способность программ молекулярного докинга адекватно охва-
тывать конформационное пространство лиганда в сайте связывания целевого белка [2]. Однако 
несмотря на свои неоспоримые достоинства, эти программы по-прежнему ненадежны для прогно-
зирования свободной энергии связывания из-за различных приближений, приводящих к неизбеж-
ным неточностям в оценочных функциях, что негативно сказывается на их эффективности [2].

Таким образом, погрешности в оценке энергии связывания комплексов лиганд–белок про-
должают оставаться наиболее существенным ограничением для проведения успешного молеку-
лярного докинга и, следовательно, для более успешного использования метода виртуального 
скрининга в создании лекарственных средств. Поэтому разработка новых, более точных и бы-
стрых оценочных функций и оценка их предсказательной эффективности являются одной из 
центральных задач в вычислительной химии и разработке лекарств in silico.

В последние годы было предложено много новых оценочных функций на основе моделей 
глубокого обучения, предлагающих альтернативы использованию явных эмпирических или ма-
тематических функций для предсказания энергии связывания комплексов лиганд–белок [3; 6– 8]. 
Однако традиционные подходы к прогнозированию эффективности оценочных функций и их 
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сравнительному анализу используют кристаллические структуры комплексов, в которых лиганд 
адаптирован к активному центру рецептора вследствие конформационных изменений, имеющих 
место при его взаимодействии с мишенью, в отличие от молекулярного докинга, который, как 
правило, проводят в приближении жесткого рецептора и гибкого лиганда. Очевидно, что это по-
зволяет получить лишь общее представление о точности оценочных функций, оставляя откры-
тым вопрос о том, какие из них более целесообразны для практического применения в условиях 
виртуального скрининга на основе молекулярного докинга.

В настоящей работе осуществлен сравнительный анализ предсказательной эффективности 
трех традиционно используемых в виртуальном скрининге оценочных функций AutoDock Vina 
(https://vina.scripps.edu), NNScore2 (https://github.com/durrantlab/nnscore2) и RF-Score-4 (https://github. 
com/oddt/rfscorevs) с новыми оценочными функциями CENsible [9], HGScore [10], OnionNet-2 [11], 
PIGNet2 [12] и PLANET [13]. Для этой цели использован эталонный набор данных CASF-2016 [6] 
и рассмотрены два варианта тестирования оценочных функций, в одном из которых проведено 
их сравнение по ориентациям лигандов в кристаллических структурах комплексов лиганд–белок, 
а в другом – по данным молекулярного докинга в реалистичных условиях виртуального скрининга.

Материалы и методы исследования. Эталонный набор данных CASF-2016. CASF-2016 пред-
ставляет собой тестовый набор данных для предсказания точности оценочных функций, исполь-
зуемых в виртуальном скрининге потенциальных лекарственных препаратов на основе данных 
молекулярного докинга [6]. Он содержит набор кристаллических структур комплексов белок–
лиганд и соответствующие им экспериментальные данные об аффинностях связывания. CASF-2016 
используют для предсказания различных характеристик оценочных функций, включая оценоч-
ную, ранжирующую, стыковочную и скрининговую мощности. Предоставляя стандартизиро-
ванные метрики и разнообразный набор комплексов высокого разрешения, CASF-2016 служит 
важным инструментом для анализа и сравнения точности и надежности различных методов вы-
числительной оценки в виртуальном скрининге. Основной набор CASF-2016 включает 57 моле-
кулярных мишеней, каждая из которых представлена пятью кристаллическими структурами 
комплексов белок–лиганд (белка – в формате .pdb, лиганда – в форматах .sdf и .mol2). Для каждо-
го комплекса CASF-2016 содержит данные о сродстве лиганда к белку, выраженные в величинах 
logKa (Ka – константа ассоциации), которые были пересчитаны из значений –logKd (Kd – констан-
та диссоциации) или –logKi (Ki – константа ингибирования) при наличии данных о константах 
диссоциации или ингибирования. Значения logKa в наборе данных находятся в диапазоне от 2 до 
12 со средним значением 6,5 и стандартным отклонением 2,2, что соответствует концентрациям 
лиганда в диапазоне от 10 мМ до 1 пМ. Выбор CASF-2016 в качестве контрольного теста обу-
словлен тем, что этот набор данных является одним из самых популярных для сравнения эффек-
тивности оценочных функций, что, в свою очередь, побуждает их разработчиков исключать этот 
тест из обучающего набора.

Сценарии тестирования предсказательной точности оценочных функций. Сценарий 1. Те-
стирование на основе данных рентгеноструктурного анализа. Подготовку структур белков в фор-
мате .pdbqt осуществляли с помощью программного пакета MGLTools 1.5.6 (https://ccsb.scripps.
edu/mgltools/). При этом из-за отсутствия поддержки ионов Zn, Mg, Ca и Na скриптом prepare_
receptor4.py MGLTools семь комплексов с кодами PDB ID 5c2h, 3twp, 1z9g, 1oyt, 3utu, 3ryj, 1lpg в Бан-
ке данных белков (https://www.rcsb.org) были исключены из тестового набора данных. В качестве 
исходного формата лигандов был выбран формат .mol2, который последовательно преобразовы-
вали в представления .sdf, .pdb и .pdbqt с помощью пакетов PyMOL (https://www.pymol.org), 
RDKit (https://www.rdkit.org) и MGLTools 1.5.6 (https://ccsb.scripps.edu/mgltools/). Из-за ошибок, 
возникших при чтении файлов .sdf с PDB ID 3arp, 3ge7 и 4dli, соответствующие комплексы были 
исключены из дальнейшего рассмотрения. В связи с высокой чувствительностью PLANET к ка-
честву исходных данных в формате .sdf, приводящей к частым ошибкам, данная оценочная функ-
ция не рассматривалась в первом варианте сравнительного анализа.

Сценарий 2. Тестирование на основе данных молекулярного докинга. При подготовке набора 
исходных данных необходимо было учесть, что в результате межмолекулярных взаимодействий, 
происходящих при связывании, в кристаллической структуре комплексов активный центр бел-
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ка-рецептора адаптирован к лиганду, что не соответствует реалиям виртуального скрининга на 
основе молекулярного докинга. Поскольку CASF-2016 включает для каждого белка-рецептора по 
5 комплексов с различными лигандами, нами было принято решение «перетасовать» структуры 
белков для всех 57 молекулярных мишеней. Это означает, что для каждого лиганда молекуляр-
ный докинг выполняли не в его «родной» белок из комплекса, а в тот же белок, но из другого 
комплекса с другим лигандом. Для этого все структуры белков с заданными кодами PDB ID 
были случайным образом сгруппированы в пары с другой структурой этого же белка, но с иным 
кодом PDB ID. Затем эту вторую структуру белка выравнивали с первой структурой с помощью 
программных средств PyMol align (https://www.pymol.org). В качестве целевых цепей для вырав-
нивания выбирали белковые цепи, образующие контакты с лигандом на расстоянии 10 Å. Вырав-
нивание считали успешным, если значение среднеквадратичного отклонения (RMSD, Root Mean 
Square Deviation) между структурами составляло <1 Å. При значениях RMSD ≥ 1 Å предприни-
малась повторная попытка выравнивания с использованием алгоритмов PyMol super и cealign. 
В результате были успешно выровнены 279 из 285 белков. При этом визуальный анализ шести 
структур со значениями RMSD > 1 Å показал умеренные различия в конформациях этих белков.

При подготовке исходных данных требовалось также сгенерировать трехмерные (3D) струк-
туры лигандов. Для этой цели использовали программный пакет RDKit. Однако структуры мо-
лекул в формате .sdf, депонированные в CASF-2016, оказались непригодны для этой цели из-за 
неточностей в кратностях валентных связей, что могло внести существенные искажения в их 
3D-представления. Для решения этой проблемы структуры лигандов были идентифицированы 
в .pdb-файлах соответствующих им комплексов, полученных с использованием сервиса RCSB 
PDB Банка данных белков (https://www.rcsb.org/), а затем загружены из него в формате .sdf. При 
этом структуры лигандов из файлов с кодами PDB ID 5tmn, 4tmn и 3bv9 не удалось идентифици-
ровать автоматически из-за смещения их позиций, возникшего при подготовке комплексов авто-
рами CASF-2016. Структуры пептидных лигандов в комплексах с PDB ID 3uri и 1a30 не были 
получены, поскольку сервис RCSB PDB не предоставляет .sdf-файлы для данного класса моле-
кул. Генерацию 3D-конформеров осуществляли в пакете RDKit с использованием алгоритма 
ETKDGv3 и последующей оптимизации их структур в силовом поле MMFF до сходимости к ло-
кальному минимуму энергии. В случае неудачи предпринималась попытка генерации конфор-
мера с помощью метода ETKDGv3 со случайными координатами. Для лигандов из комплексов 
с кодами PDB ID 2yge и 2x00 не удалось получить 3D-конформеры из-за искажения стереохимии 
соединений в процессе генерации.

На заключительном этапе подготовки данных проводили докинг сгенерированных 3D-кон-
формеров с выровненным белком-мишенью из другого комплекса. При конструировании ячейки 
для докинга в качестве эталонной использовали структуру лиганда в кристалле, взятую с макси-
мальными и минимальными координатами x, y и z с запасом 6 Å. Структуры выровненного бел-
ка и сгенерированного 3D-конформера конвертировали в формат PDBQT с помощью программ-
ных средств пакета MGLTools 1.5.6 (https://ccsb.scripps.edu/mgltools/). При этом структуры белков 
из комплексов с кодами PDB ID 5c2h, 1z9g и 3ryj, которые предполагалось использовать в каче-
стве мишеней для оценки сродства лигандов из комплексов с PDB ID 5c28, 4tmn и 2weg, не были 
преобразованы в формат PDBQT по причинам, описанным выше. Молекулярный докинг прово-
дили с использованием программы AutoDock Vina 1.2.5 с  параметром полноты, равным 100. 
Структуру лиганда, связанного с белковой мишенью, конвертировали в форматы .sdf и .pdb с ис-
пользованием RDKit, а затем формат .sdf преобразовывали в .mol2 с помощью пакета PyMol.

Результаты и их обсуждение. В таблице приведены значения коэффициента корреляции Пир
сона (R) и среднеквадратичной ошибки (RMSE – Root Mean Square Error) для сравниваемых оце-
ночных функций, рассчитанные между экспериментальными и предсказанными значениями 
logKa для первого варианта сравнения. Из анализа данных таблицы видно, что оценочные функ-
ции RF-Score-4, OnionNet-2 и HGScore демонстрируют относительно высокие значения коэффи-
циента корреляции (R > 0,8) и относительно низкие величины RMSE (<1,5). Однако на момент 
разработки оценочной функции RF-Score-4 набор данных CASF-2016 еще не был создан, и поэтому 
для ее тестирования был применен пользовательский набор данных. В результате из 275 комплек-
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сов, использованных нами в настоящем исследовании, 241 комплекс был включен в обучающую 
выборку RF-Score-4, что объясняет высокую эффективность данной оценочной функции. При 
исключении этих комплексов из сравнительного анализа величина R падает до 0,75, а значение 
RMSE увеличивается до 1,64 (размер выборки n = 34).

Значения коэффициента корреляции Пирсона и среднеквадратичной ошибки между предсказанными  
и экспериментальными значениями logKа для двух сценариев тестирования оценочных функций

Pearson correlation coefficient and root mean square error (RMSE) values calculated for predicted  
and experimental logKa values for two scoring function testing scenarios

Оценочная функция
Score function

Сценарий 1. Структура комплекса в кристалле
Scenario 1. Structure of the complex in crystal

Сценарий 2. Структура комплекса, построенная методом  
молекулярного докинга

Scenario 2. Structure of the complex constructed using 
molecular docking

Коэффициент  
корреляции Пирсона (R)

Pearson correlation 
coefficient (R)

Среднеквадратичная  
ошибка (RMSE)

Root Mean Square Error (RMSE)

Коэффициент  
корреляции Пирсона (R)

Pearson correlation 
coefficient (R)

Среднеквадратичная  
ошибка (RMSE)

Root Mean Square Error (RMSE)

AutoDock Vina 0,61 1,86 0,50 1,97
NNScore2 0,68 1,65 0,50 2,25
RF-Score-4 0,89 1,15 0,83 1,33
CENsible 0,71 1,54 0,56 1,91
HGScore 0,81 1,31 0,70 1,57
OnionNet-2 0,83 1,27 0,77 1,48
PIGNet2 0,75 1,68 0,49 2,87
PLANET - - 0,76 1,51

П р и м е ч а н и я: жирным шрифтом выделены значения для лучших оценочных функций; для оценочной функ-
ции RF-Score-4 указаны значения, рассчитанные для выборки из 275 комплексов, из которых 241 комплекс был 
включен в ее обучающую выборку.

N o t e s: the values for the best scoring functions are shown in bold; for the RF-Score-4 scoring function, the reported 
values were calculated on a dataset of 275 complexes, of which 241 complexes were included in its training set.

Для реализации второго варианта сравнительного анализа оценочных функций были ото-
браны 270 из 285 комплексов, представленных в контрольном наборе тестов CASF-2016. В ре-
зультате проведенного тестирования оценочные функции NNScore2, CENsible и PIGNet2 показы-
вают значительное снижение точности предсказания аффинности связывания и умеренную 
корреляцию с экспериментальными значениями logKa. В отличие от этих оценочных функций, 
AutoDock Vina демонстрирует незначительное уменьшение предсказательной эффективности 
(таблица). Однако учитывая низкую точность AutoDock Vina в первом сценарии сравнения, эти 
общие показатели ставят ее на один уровень с тремя указанными выше оценочными функция-
ми. В то же время OnionNet-2 характеризуется незначительным снижением точности при сохране-
нии высокой корреляции с экспериментальными данными, как и оценочная функция PLANET, 
для которой наблюдается высокая предсказательная эффективность, сравнимая с OnionNet-2 (та-
блица). Анализ эффективности остальных оценочных функций показывает, что HGScore прояв-
ляет умеренное снижение точности прогнозирования сродства лигандов к белкам-рецепторам 
и имеет сопоставимые характеристики с PLANET и OnionNet-2 (таблица). Между тем, функция 
RF-Score-4 демонстрирует наилучшую точность предсказания (значения R и RMSE равны 0,83 
и 1,33 соответственно), что, как и в случае первого сценария, можно было бы объяснить наличи-
ем тестовых образцов в обучающем наборе данных. Исключение этих образцов из тестового на-
бора приводит лишь к незначительному снижению точности RF-Score-4 (R = 0,79 и RMSE = 1,73; 
таблица), которое позволяет поставить ее в один ряд с лучшими оценочными функциями. Одна-
ко размер выборки n, который в данном случае был равен 34, недостаточен для надежной оценки 
истинной эффективности RF-Score-4.

В ситуации, когда неактивных соединений значительно больше, чем активных, критически 
важно, чтобы оценочная функция была устойчива к выбросам, которые могут привести к боль-
шому количеству ложноположительных результатов, приводящих к отнесению молекул с низ-
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кой активностью к высокоаффинным лигандам целевого белка. Из графика, приведенного на 
рисунке, видно, что оценочные функции Planet и OnionNet-2 эффективно идентифицируют сое-
динения с низким и высоким потенциалом ингибиторной активности, как и PIGNet2, которая 
также хорошо справляется с этой задачей. Тем не менее, точность предсказания аффинности свя-
зывания с помощью PIGNet2 оказалась недостаточно высокой для использования в виртуальном 
скрининге потенциальных лекарств на основе молекулярного докинга (таблица).

Заключение. В настоящей работе осуществлен сравнительный анализ точности восьми со-
временных оценочных функций молекулярного докинга. С этой целью использовали контроль-
ный набор тестов CASF-2016 и рассматривали два сценария виртуального скрининга потенци-
альных лекарств в химических базах данных. Один из этих сценариев проводили с привлечением 
кристаллических структур комплексов лиганд–белок, а другой – в условиях виртуального скри-
нинга путем стыковки с молекулярной мишенью конформеров лигандов, сгенерированных с по-

График сравнения предсказанных оценочными функциями (ось x) и экспериментальных (ось y) значений logKa для 
комплексов лиганд–белок, построенных методом молекулярного докинга. Точки с низкой экспериментальной актив
ностью (logKa  ≤  5, не менее 10 мкМ) выделены серым цветом, с умеренной активностью (5  <  logKa  ≤  7, менее  
10 мкМ и не менее 0,1 мкМ) – светло-серым, а с высокой активностью (logKa > 7, менее 100 нМ) – темно-серым. Для 
каждой оценочной функции проведена пунктирная вертикальная линия, представляющая 10-й процентиль 

предсказанных значений, что соответствует величине, полученной для 27-го лучшего соединения

Parity plot of predicted (x-axis) and experimental (y-axis) logKa values for ligand-protein complexes constructed by molecular 
docking. Points with low experimental activity (logKa ≤ 5, at least 10 μM) are highlighted in grаy, with moderate activity 
(5 < logKa ≤ 7, less than 10 μM and at least 0.1 μM) in light gray, and with high activity (logKa > 7, less than 100 nM) in dark 
gray. For each scoring function, a dotted vertical line is drawn representing the 10th percentile of predicted values, which 

corresponds to the value obtained for the 27th best compound



460	 Doklady of the National Academy of Sciences of Belarus, 2025, vol. 69, no. 6, рр. 454–461

мощью программных средств пакета хемоинформатики RDKit. В результате проведенных иссле-
дований показано, что оценочные функции PLANET и OnionNet-2 демонстрируют наиболее 
высокую точность, эффективно предсказывая сродство лиганда к белку и увеличивая достовер-
ность предсказания молекул-кандидатов с высоким потенциалом ингибиторной активности. По-
лученные данные показывают, что оценочные функции PLANET и OnionNet-2 могут быть ис-
пользованы в вычислительных протоколах молекулярного докинга для последующего расчета 
экспоненциального консенсусного ранга для каждого лиганда [14] и надежного отбора наиболее 
вероятных ингибиторов заданной терапевтической мишени.
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