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АДСОРБЦИЯ ИОНОВ Ni2+ КАРБОНАТНЫМИ И ФОСФАТНЫМИ СОРБЕНТАМИ

Аннотация. Изучена адсорбция ионов Ni2+ сорбентами на основе термически активированного при 800 °С доло-
мита (Д-800), фосфатированного доломита (ФД) и Zr-модифицированного ФД (ФД-Zr). Установлено, что образец 
Д-800 характеризуется наиболее высокой сорбционной емкостью (364 мг/г), при исходной концентрации ионов Ni2+ 
300 мг/л достигается очистка водных растворов до норм предельно допустимой концентрации (ПДК) питьевой воды 
(менее 0,1 мг/л), а при С0 Ni2+ 50 мг/л глубокая очистка до остаточной концентрации менее 0,01 мг/л. Выявлено, что 
поглощение ионов Ni2+ сорбентом Д-800 обусловлено гетерогенным осаждением основного карбоната никеля, а в слу
чае сорбента ФД образуется гидрофосфат никеля. Результаты десорбции ионов Ni2+ из насыщенных сорбентов сви-
детельствуют о протекании ионного обмена с участием аморфного фосфата циркония для образца ФД-Zr. При этом 
наименьшую степень десорбции (<1 %) показали образцы Д-800 и ФД. В динамической сорбции гранульный сорбент 
Д-800 обеспечивает очистку более 1000 колоночных объемов раствора с С0 10 мг/л ниже уровня ПДК питьевой воды 
при линейной скорости фильтрации 20 м/ч.
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ADSORPTION OF Ni2+ IONS BY PHOSPHATE AND CARBONATE ADSORBENTS

Abstract. The adsorption of Ni2+ ions by sorbents based on dolomite thermally activated at 800 °C (D-800), phosphated 
dolomite (PD), and Zr-modified PD (PD-Zr) was studied. It was found that D-800 sample was characterized by the highest 
sorption capacity (364 mg/g), while at the initial concentration of Ni2+ ions of 300 mg/L, the purification of aqueous solutions 
to the MPC standards for drinking water (< 0.1 mg/L) was achieved, and at C0 (Ni2+) of 50 mg/L, deep purification to a residual 
concentration of < 0.01 mg/L occurred. It was revealed that the absorption of Ni2+ ions by the D-800 sorbent is due  
to the heterogeneous precipitation of nickel hydroxicarbonate, and in the case of the PD sorbent, nickel hydrophosphate  
is formed. The results of desorption of Ni2+ ions from saturated sorbents indicated the occurrence of ion exchange with 
the participation of amorphous zirconium phosphate for the PD-Zr sample. The lowest desorption degree (<1 %) was 
demonstrated by samples D-800 and PD. In the dynamic sorption process, the granular sorbent D-800 provided purification of 
more than 1000 column volumes of solution with C0 (Ni2+) 10 mg/L below the MPC standards for drinking water at a linear 
filtration rate of 20 m/h.
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Введение. Тяжелые металлы используются в качестве исходного сырья в наиболее интенсив-
но развивающихся отраслях промышленности, таких как электротехника, гальваника, произ-
водство катализаторов и аккумуляторов, кожевенные заводы, производство пестицидов, удобре-
ний и т. д. [1; 2]. В ходе технологических процессов, в том числе при добыче полезных ископаемых 
и переработке руды, тяжелые металлы попадают в небольших количествах в отработанные рас-
творы и сточные воды [3], сбрасываемые в природные водоемы. Тяжелые металлы попадают 
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в природные гидросистемы и почву также естественным путем в результате эрозии месторожде-
ний этих металлов, вулканической деятельности, лесных пожаров, наводнений.

Сточные воды перед сбрасыванием в экосистему подвергаются тщательной очистке различ-
ными методами: химическое осаждение, коагуляция и флотация, электрохимическая обработка, 
биоочистка, ионный обмен и адсорбция, фотокатализ, мембранная фильтрация [4; 5]. Однако тя-
желые металлы не подвержены химическому и биологическому разложению и накапливаются 
в природной среде, представляя серьезную угрозу всей экосистеме, включая человека [6].

Карбонаты и фосфаты щелочноземельных металлов, в частности Ca и Mg, являются высоко-
эффективными сорбентами тяжелых металлов, образующих с карбонатами и фосфатами труд-
норастворимые соединения с очень низким значением произведения растворимости (ПР). При-
родный широко распространенный и дешевый минерал доломит, который представляет собой 
карбонат Ca–Mg, это уникальный материал, проявляющий сорбционные свойства по отношению 
к тяжелым металлам в натуральном виде, его термической активацией получены высокоактив-
ные по отношению к тяжелым металлам карбонатные сорбенты [7; 8], фосфатированием ‒ фос-
фаты Ca–Mg [9], а также смешанные фосфаты двух- и четырехвалентных металлов, в частности 
Zr–Ca–Mg [10].

На природном доломите, не подвергнутом активации, сорбировано до 24,8 мг/г ионов Pb2+, 
1‒4 мг/г Sr2+ и Ba2+, около 1 мг/г Mn2+, до 51 мг/г Zn2+, а также до 20 мг/г Ni2+ [7; 11; 12] и других 
ионов металлов. В концентрированных растворах (до 2000 мг/л) [13] получена достаточно высо-
кая сорбционная емкость на природном доломите, не подвергавшемся термической активации, 
по ионам Cu2+ ‒ до 308‒378 мг/г.

На термически активированном доломите, в сравнении с неактивированным в аналогичных 
условиях, сорбция катионов тяжелых металлов многократно выше [7; 11; 12]. В частности, мак-
симальная емкость по ионам Zn2+ и Ni2+ на природном доломите составила 1,7 и 2 мг/г, а на тер-
мически активированном ‒ 12,2 и 4,7 мг/г. Представленные в литературе данные по сорбции ме-
таллов получены в различных условиях, в частности при различной дозе сорбента и концентрации 
раствора [7], а максимальная емкость зависит напрямую от этих двух факторов.

Информация, имеющаяся в литературе, свидетельствует о том, что никель сорбируется хуже 
других металлов, являясь одним из наиболее трудноудаляемых ионов [7; 11; 12].

В связи с этим объектом исследования в данной работе выбран никель. Сточные воды прак-
тически не бывают однокомпонентными, однако чтобы понять эффективность работы тех или 
иных сорбентов и причину низкой сорбируемости никеля, в частности, целесообразно провести 
изучение сорбции его из монокомпонентных растворов.

Целью настоящей работы является сравнительное исследование сорбционной эффективно-
сти по отношению к ионам Ni2+ и прочности их минерализации сорбентами различной природы, 
полученными из доломита. При этом объектом особого внимания является остаточная концен-
трация ионов Ni2+ в растворе после сорбции и возможность очистки от ионов Ni2+ до уровня ПДК. 
В качестве сорбентов нами выбраны три модификации доломита: 1) термическая модификация 
с активной оксидно-карбонатной поверхностью; 2) фосфатированная модификация, представля-
ющая собой смесь сорбционно-активных к ионам тяжелых металлов гидрофосфатов Ca и Mg;  
3) сорбент на основе фосфатов Zr–Ca–Mg, который в отличие от предыдущего содержит фосфат 
Zr, обладающий ионообменными свойствами. Перечисленные сорбенты характеризуются раз-
личным механизмом поглощения ионов токсичных металлов из раствора. Термоактивирован-
ный доломит может поглощать ионы многовалентных металлов из водных растворов как за счет 
непосредственного взаимодействия с образованием менее растворимых карбонатов или гидрок-
сикарбонатов, так и благодаря своим щелочным свойствам, способствующим осаждению ги-
дроксидов этих металлов. В тех случаях, когда гомогенное осаждение неэффективно по причине 
малых концентраций ионов Ме в растворе, перспективным может быть гетерогенное осаждение 
на высокощелочной поверхности сорбента. Фосфатированный доломит, представляющий собой 
смесь гидрофосфатов Ca и Mg, вступает с ионами тяжелых металлов в реакции гетерогенного 
замещения с образованием соединений с меньшей энергией Гиббса, в частности менее раствори-



	 Доклады Национальной академии наук Беларуси. 2025. Т. 69, № 6. С. 477–487	 479

мых фосфатов, а сорбент на основе фосфатов Zr–Ca–Mg обладает дополнительно выраженными 
ионообменными свойствами, характерными для фосфата циркония.

В настоящей работе представлены результаты исследования адсорбции/десорбции ионов 
Ni2+ из водных растворов тремя сорбентами, синтезированными из природного доломита, про-
являющими различный механизм поглощения.

Материалы и методы исследования. Исходным сырьем для получения сорбентов служил 
природный доломитовый щебень месторождения Руба (Витебская область, Республика Беларусь). 
Термически активированный при 800 °C доломит (Д-800), его фосфатированную модификацию 
(ФД) и композиционный сорбент Zr–Ca–Mg (ФД-Zr) получали из природного доломита как опи-
сано в наших предыдущих работах [8‒10]. Полученный при 800 °C доломит представляет собой 
смесь MgO и CaCO3. Химические и фазовые превращения доломита при термической активации 
при 800 °С описываются следующей схемой:

	 Ca,Mg(CO3)2 → CaCO3 + MgO + CO2↑.

Фосфатированный доломит представляет собой смесь кислых фосфатов Ca и Mg, образова-
ние которых из Д-800 описывается уравнениями:

	 CaCO3(тв) + H3PO4 + Н2О → СаHPO4·2H2O(тв) + CO2,

	 MgO(тв) + H3PO4 + 2Н2О → MgHPO4·3H2O(тв).

Сорбент на основе фосфатов Zr–Ca–Mg является продуктом дальнейшего модифицирования 
ФД. Его можно получить взаимодействием ФД с раствором азотнокислого цирконила. Однако 
целесообразнее получать композиционный фосфат в одну стадию из Д-800 без промежуточных 
сушек. Методика гетерогенного синтеза фосфатных сорбентов Zr–Ca–Mg разработана в ИОНХ 
НАН Беларуси. Полученный композиционный сорбент, согласно проведенным ранее исследова-
ниям, представляет собой смесь гидрофосфатов Ca и Mg и аморфного фосфата циркония состава 
Zr(HPO4)2·H2O. Фосфат циркония в указанной системе образуется за счет гетерогенного замеще-
ния в первую очередь Mg, а затем и Ca в гидрофосфатах на цирконил-ион:

	 СаHPO4·2H2O + ZrO2+ → Zr(HPO4)2·H2O + Ca2+,

	 MgHPO4·3H2O + ZrO2+ → Zr(HPO4)2·H2O + Mg2+.	 (1)

Фазовый состав синтезированных сорбентов определен методом рентгенофазового анализа 
(РФА) на рентгеновском дифрактометре D8 Advanced (Bruker, Германия) с использованием 
CuKα-излучения (диапазон 2Θ 5‒70°). Химический состав образцов определяли с помощью рент-
генофлуоресцентного анализа (XRF) на спектрометре S8 TIGERSeries 2 (Bruker, Германия). Для 
проведения анализа образец спрессовывали в таблетку диаметром 4,0 см под давлением 0,25 МПа.

Исследования извлечения ионов Ni2+ проводили на растворах концентрацией Ni2+ от 1 до 
5000 мг/л при соотношении объема раствора к навеске сорбента V / mадс 250 мл/г. Адсорбцию в ди-
намических условиях проводили на колонке с соотношением высоты слоя сорбента к диаметру 
колонки 6,4, масса сорбента ‒ 6,31 г, раствор с исходной концентрацией 10 мг/л, рН 5,5, линейная 
скорость прохождения раствора ‒ 20 м/ч.

Концентрацию ионов Ni2+ в исходных растворах и фильтратах определяли методом атомно- 
абсорбционной спектроскопии на атомно-эмиссионном спектрометре с индуктивно-связанной 
плазмой EXPEC 6500.

По разности концентраций раствора до и после сорбции рассчитывали адсорбцию ионов Ni2+ 
q (мг/г) и степень его удаления из раствора α (%) по формулам

	 q = (С0 ‒ С)V / mадс,

	 α = (С0 ‒ С)/C0·100,
где C0 и C (мг/л) – исходная и равновесная концентрация ионов в фильтрате после сорбции; V (л) ‒ 
объем раствора; mадс (г) ‒ масса навески.
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Насыщение сорбентов ФД и ФД-Zr ионами Ni2+ для изучения десорбции проводили из рас-
твора концентрацией 1400 мг/л, сорбента Д-800 ‒ 2000 мг/л при V / mадс 250 мл/г в течение 24 ч 
при периодическом перемешивании. Далее образцы отфильтровывали, промывали водой, высу-
шивали на воздухе. Насыщенные образцы взвешивали, определяли mнас (г) и рассчитывали со-
держание никеля QNi (мг/г) в образце по формуле

	 QNi = (С0 ‒ С)V / mнас.

Для изучения десорбции насыщенные ионами Ni2+ образцы помещали в водные растворы 
с рН 3, 5,5 и 8 при соотношении V / mнас 25/0,1 мл/г на 1, 2, 3, 4 и 7 суток при постоянном переме-
шивании. После выдерживания в течение заданного времени твердую фазу отфильтровывали, 
измеряли содержание металла в растворе (СNi, мг/л) и рассчитывали степень десорбции β (%) по 
формуле
	 β = (СNiV) / (mнасQNi)100.

Измерения pH проводили на pH-метре рН-150М (Республика Беларусь) с точностью ±0,02. рН 
регулировали 0,01 М растворами HNO3 и NaOH.

Для описания полученных изотерм использованы математические модели Ленгмюра, Френ-
длиха и Редлиха–Петерсона [14].

Для характеристики соответствия полученных экспериментальных данных перечисленным 
моделям сорбции рассчитывали коэффициент аппроксимации
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где qe, calc ‒ равновесная емкость, рассчитанная из уравнения изотермы; qe, exp ‒ равновесная ем-
кость, полученная экспериментально; ,expeq  ‒ среднее значение qe,  exp. Для сравнения моделей 
сорбции рассчитывали также значения стандартной ошибки SE 
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где m – количество экспериментальных точек; p – количество параметров модели изотермы. Об-
работка экспериментальных данных на соответствие представленным моделям осуществлялась 
с помощью табличного редактора Microsoft Excel путем поиска значений параметров, обеспечи-
вающих минимальные значения ошибок SE и максимальные значения R2.

Результаты и их обсуждение. Рентгенограммы исходных сорбентов представлены на рис. 1,  а. 
Д-800 представлен рефлексами CaCO3 и MgO, ФД ‒ пиками СаHPO4·2H2O и MgHPO4·3H2О, а на 
дифрактограмме ФД-Zr присутствуют рефлексы только гидрофосфата Ca, что свидетельствует 
о том, что образование аморфного фосфата циркония происходит в первую очередь по реакции (1). 
Согласно данным химического анализа состав Д-800 можно передать примерной формулой 
2CaCO3·MgO, ФД ‒ Ca0,7Mg0,3HPO4∙2H2O, ФД-Zr ‒ Zr(HPO4)2·ZrO2·1,9(Ca0,78Mg0,22HPO4)·8H2O.

Изотермы сорбции ионов Ni2+ на трех сорбентах из растворов различной концентрации пред-
ставлены на рис. 2, а. Как видно, эффективность поглощения ионов различными сорбентами су-
щественно различается. Максимальное поглощение ионов Ni2+ составило на равновесных плато 
изотерм ~50, 185 и 364 мг/г для сорбентов ФД-Zr, ФД и Д-800 соответственно. Извлечение ионов 
Ni2+ из раствора с помощью термически активированного доломита превосходит его поглощение 
с помощью фосфатных сорбентов более чем в 7 и 2 раза.

Результаты математической обработки изотерм сорбции ионов Ni2+ тремя различными сор-
бентами по уравнениям Ленгмюра, Френдлиха и Редлиха–Петерсона (таблица) свидетельствуют 
о том, что поглощение ионов Ni2+ композиционным сорбентом на основе Ca–Mg–Zr-фосфата опи-
сывается уравнением Ленгмюра (R2 = 0,99) и Редлиха–Петерсона (R2 = 0,99), для адсорбентов ФД 
и Д-800 наиболее достоверно уравнение Редлиха–Петерсона (R2 = 0,99 и 0,98 соответственно). 
Минимальные значения SE получены при анализе данных сорбента ФД-Zr, в том числе для мо-
дели Ленгмюра, что подтверждает наибольшее соответствие экспериментальных данных именно 



	 Доклады Национальной академии наук Беларуси. 2025. Т. 69, № 6. С. 477–487	 481

Рис. 1. Рентгенограммы исходных сорбентов (а) и продуктов сорбции ионов Ni2+ (b).  
Сорбенты: Д-800 (1), ФД (2) и ФД-Zr (3)

Fig. 1. X-ray diffraction patterns of the initial sorbents (a) and after sorption of Ni2+ ions (b).  
Sorbents: D-800 (1), PD (2) and PD-Zr (3)

Рис. 2. Экспериментальные и рассчитанные по модели Редлиха–Петерсона изотермы адсорбции ионов Ni2+ (a)  
и рН растворов после сорбции (b) образцами Д-800, ФД и ФД-Zr

Fig. 2. Experimental and calculated according to the Redlich–Peterson model isotherms of Ni2+ ions sorption (a)  
and pH of solutions after adsorption (b) by D-800, PD and PD-Zr samples
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этой модели. Для этого же сорбента значение параметра g уравнения Редлиха–Петерсона явля-
ется наименьшим, что говорит о невысокой степени заполнения монослоя. Наибольшие значения 
SE для сорбента Д-800 обусловлены его высокой поглотительной способностью, в результате чего 
при концентрациях С0 до 300 мг/л остаточные концентрации ниже предела чувствительности 
прибора, а для достижения максимальной адсорбционной емкости использованы растворы с вы-
сокой концентрацией, требующей разбавления в 200‒300 раз.

Параметры изотерм адсорбции ионов Ni2+ различными адсорбентами

Parameters of adsorption isotherms of Ni2+ ions by various adsorbents

Модель
Model

Параметр
Parameter

Адсорбент
Adsorbent

Д-800
D-800

ФД
PD

ФД-Zr
PD-Zr

Экспериментальные данные qm (мг/г) 371,4 185,5 50,1

Ленгмюр

qm (мг/г) 361,2 171,8 52,8
KL (л/мг) 1,53 0,02 0,01

SE 28,3 14,0 1,63
R2 0,97 0,97 0,99

Фрейндлих

KF (мг/г) 98,9 15,2 3,97
nF 0,17 0,33 2,72
SE 44,1 14,7 3,39
R2 0,93 0,96 0,97

Редлих–Петерсон

KRP (л/г) 1103,1 7,28 3,04
aRP (мг/л)–g 4,89 0,16 0,41

g 0,94 0,81 0,72
SE 22,1 7,22 1,95
R2 0,98 0,99 0,99

Изотермы сорбции отличаются по форме кривых, что свидетельствует о различии в сродстве 
ионов никеля к сорбентам. Так, изотермы сорбентов ФД и ФД-Zr относятся к типу L, а Д-800 ‒ 
к типу H, характеризующемуся резким подъемом адсорбированного количества на 1 г сорбента 
на начальном отрезке, что означает высокое сродство ионов Ni2+ к этому сорбенту [15]. Об этом 
же свидетельствует и высокое значение константы KRP [14]. Максимальное значение параметра g 
уравнения Редлиха–Петерсона для этого сорбента свидетельствует о наибольшей степени запол-
нения монослоя. Представленные в литературе данные по математической обработке изотерм 
сорбции ионов металлов на доломите, в том числе ионов Ni2+, свидетельствуют о том, что наибо-
лее часто этот процесс описывается моделью Лэнгмюра со значением R2 ≥ 0,93 [7; 12].

Различное поведение в сорбционных процессах образцами сорбентов обусловлено различ-
ным химическим составом и, как следствие, различным механизмом поглощения ионов Ni2+. 
При контакте термообработанного доломита с ионами Ni2+ происходит, согласно данным РФА, 
образование труднорастворимого гидроксикарбоната никеля Ni2CO3(OH)2, рефлексы которого 
присутствуют на рентгенограмме продукта насыщения (рис. 1, b) наряду с рефлексами непроре-
агировавшей фазы доломита CaCO3 и MgO.

Сопоставление изотермы сорбции ионов Ni2+ и кривых рН исходных растворов и после сорб-
ции (рис. 2, b) в зависимости от концентрации исходного раствора свидетельствует о том, что 
активированный доломит работает как гетерогенный щелочной осадитель. Наиболее полное 
осаждение никеля наблюдается для растворов с исходной концентрацией 1‒700 мг/л. Степень 
извлечения никеля из растворов с такой исходной концентрацией составляет 99,9 %. При даль-
нейшем увеличении концентрации исходного раствора она последовательно падает. рН растворов 
после сорбции в этих условиях составляет 8,7‒11,9. В области С0 1‒50 мг/л рН растворов после 
сорбции около 11,8, а остаточная концентрация никеля в растворе составляет 0,001‒0,008 мг/л, 
что в десятки раз ниже предельно допустимых значений для питьевой и сточных вод и водоемов 
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рыбохозяйственного назначения (ПДКNi питьевой воды в Беларуси и России 0,1 мг/л, в странах 
ЕС 0,05 мг/л, для рыбохозяйственных водоемов Беларуси и России 0,01 мг/л). Как видно, для бо-
лее глубокой очистки до остаточных концентраций ниже 0,01 необходима рН выше 11.

Присутствие на рентгенограмме рефлексов гидроксикарбоната Ni не исключает образования 
и других труднорастворимых соединений никеля в аморфном состоянии ‒ карбоната, гидрокси-
да, оксида (ПРNiCO3 = 4,5·10

–8, ПРNi(OH)2 = 1,2·10
–12, ПРNiO = 2,95·10

–16). В справочной литературе 
мы не обнаружили данных по растворимости гидроксикарбоната Ni.

В процессе реакции Ni с ФД в соответствии с представленной дифрактограммой образуется 
гидрофосфат Ni (рис. 1, b). Его полосы присутствуют на рентгенограмме насыщенного никелем 
адсорбента. Наряду с рефлексами образовавшейся фазы присутствуют рефлексы непрореагиро-
вавшего гидрофосфата Са, также как и на рентгенограмме насыщенного образца ФД-Zr. Новых 
фаз методом РФА после сорбции на ФД-Zr не обнаружено, возможно, из-за малого содержания 
ионов Ni. Однако следует учитывать, что в состав адсорбента входит аморфный фосфат цирко-
ния, обладающий ионообменными свойствами. Так что в этом образце содержится также Ni, по-
глощенный ионообменно.

Адсорбент ФД, который представляет собой смесь гидрофосфатов Ca и Mg, поглощает ионы 
Ni2+ из раствора в результате протекания гетерогенной обменной реакции замещения с образо-
ванием соединений с меньшим запасом энергии Гиббса, в данном случае менее растворимых:

	 СаHPO4·2H2O + Ni2+ → NiHPO4·3H2O + Са
2+,	 (2)

	 MgHPO4·3H2O + Ni2+ → NiHPO4·3H2O + Mg2+.	 (3)

Интенсивность гетерогенных обменных реакций (2), (3) зависит от ∆ПР, т.  е. разности ПР 
исходного соединения и ПР продукта реакции. Поэтому в первую очередь протекает реакция (3), 
так как ∆ПР фосфатов Ni и Mg выше, чем ∆ПР фосфатов Ni и Ca. В любом случае ∆ПР всех этих 
фосфатов не очень велико и процесс протекает не очень интенсивно. В связи с этим фосфатные 
сорбенты не обеспечивают такой глубины очистки раствора от ионов Ni2+, как термически моди-
фицированный доломит даже в области малых исходных концентраций. Концентрация раствора 
после сорбции для растворов с исходной концентрацией Ni до 15 мг/л составляет для Zr-содер
жащего сорбента 0,17‒1,30 мг/л, что существенно выше, чем концентрация раствора после кон-
такта с адсорбентом Д-800, для ФД соответствующие значения составляют 0,826‒2,028 мг/л. Со-
ответственно степень извлечения ионов Ni2+ из раствора фосфатными сорбентами составила 
в этом диапазоне концентраций 79‒83 % для ФД-Zr и 21‒94 % для ФД. Следует отметить также, 
что в области очень низких концентраций (1‒5 мг/л) ФД менее эффективен, чем ионообменный 
ФД-Zr, хотя последний в сравнении с ФД содержит меньше фосфата Mg (1,7 против 3,4 %), наи-
более активного в реакции взаимодействия с ионами Ni2+.

Кривые изменения рН растворов до и после сорбции (рис. 2, b) свидетельствуют о том, что 
для обоих фосфатных сорбентов в процессе поглощения рН растворов мало изменяется, в то вре-
мя как после контакта с Д-800 наблюдается существенное увеличение рН в широком диапазоне 
значений исходных концентраций.

Таким образом, по эффективности сорбции ионов Ni2+ и степени очистки раствора от Ni изу-
ченные сорбенты располагаются в ряд Д-800 > ФД > ФД-Zr.

Поскольку эффективность и глубина извлечения ионов Ni2+ определяются щелочными свой-
ствами термомодифицированного доломита, определяющим фактором его эффективности в сорб
ционных процессах являются условия его получения и состав. Щелочность доломита очень 
сильно изменяется с увеличением температуры активации от 700 до 900 °С. рН водной вытяжки 
полученных в указанном интервале температур продуктов изменяется от 11,4 до 12,9. рН водной 
вытяжки природного доломита составляет 9,4. В связи с этим приведенные в литературе данные 
по эффективности удаления ионов Ni2+ из раствора термомодифицированным доломитом суще-
ственно различаются. При этом различаются не только природный состав в различных регио-
нах, условия активации доломита, но также и условия осуществления сорбционного процесса, 
в частности значение модуля ванны. Сам природный доломит из разных регионов отличается по 
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содержанию доломитовой фазы. Наиболее близкие к на-
шим результаты получены в [12]. Сорбцию ионов Ni2+ про-
водили на доломите, прокаленном в течение 1 ч при 750 °С, 
с рНтнз 11,6. Показано почти 100  %-ное извлечение Ni из 
раствора с концентрацией менее 50 мг/л. Согласно пред-
ставленным в этой работе данным на Д-800 (термообра-
ботка в течение 5 ч) высокое извлечение Ni наблюдается 
в более широком интервале концентраций исходного рас-
твора до 700 мг/л даже при меньшей почти в 2 раза дозе 
сорбента. Таким образом, наблюдаемые различия связаны 
с условиями термообработки. Следует также учитывать 
анионный состав раствора. Быстрая потеря эффективно-
сти на дренажных стоках [12] может быть обусловлена 
анионным составом раствора. Авторы изучали сорбцию 
из сульфатных растворов, а, как известно, сульфат-ионы 
взаимодействуют с поверхностью кальцита с образованием 
гипса, что могло привести к потере активности. Это свиде-
тельствует о том, что для конкретного применения термо-
активированного доломита в качестве сорбента следует 
отрабатывать технологический режим его получения и па-
раметры использования в сорбционном процессе на кон-
кретных природных доломитах.

Существенным преимуществом доломита является возможность использования в виде при-
родных гранул. Дроблением и отсеиванием фракции нужного размера с последующей термо-
обработкой получается гранулированный сорбент для работы в динамическом режиме. Нами 
проведены опыты с доломитовым щебнем фракции 0,6‒1,3 мм, который подвергали термической 
обработке и использовали для исследования очистки раствора в динамике. В динамических 
опытах гранульный сорбент обеспечивает очистку до минимального уровня ПДК водохозяй-
ственных водоемов 50 колоночных объемов, до уровня ПДК питьевой воды в Беларуси и России 
более 1000 колоночных объемов для растворов с исходной концентрацией 10 мг/л при скорости 
прохождения раствора 20 м/ч. При этом степень извлечения ионов Ni2+ из модельного одноком-
понентного раствора (C0 = 10,0 мг/л) адсорбентом Д-800 находится в диапазоне 99,5–100,0 % (рис. 3).

Для сравнительной оценки прочности мобилизации Ni различными сорбентами нами изуче-
на десорбция ионов Ni2+ в идентичных условиях, в частности в водных растворах с различным 
рН (3; 5,5; 8) в течение 1‒7 сут. при соотношении V / m = 250 мл/г (рис. 4).

Рис. 3. Степень извлечения ионов Ni2+  
из модельного раствора (C0 (Ni2+) = 10 мг/л) 

образцом Д-800 при адсорбции 
в динамическом режиме. n – количество 

колоночных объемов

Fig. 3. The degree of extraction of Ni2+ ions 
from the model solution (C0 (Ni2+) = 10 mg/L) 

by D-800 sample during adsorption  
in dynamic mode. n – number of column 

volumes

                                   a                                                                    b                                                                        c

Рис. 4. Зависимость степени десорбции ионов Ni2+ от времени и рН растворов  
из насыщенных адсорбентов Д-800 (а), ФД (b) и ФД-Zr (c)

Fig. 4. Dependence of the degree of desorption of Ni2+ ions on time and pH of solutions  
from saturated adsorbents D-800 (a), PD (b) and PD-Zr (c)
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Десорбция ионов Ni2+ при всех значениях рН из ФД-Zr значительно превышает десорбцию из 
двух других сорбентов. Концентрация ионов Ni2+ через 7 суток контакта с дистиллированной 
водой (рН 5,5) составляет для ФД-Zr 18 мг/л, для двух других сорбентов 0,45 и 1,18 мг/л, т.  е. 
в первом случае концентрация раствора в 20 раз выше. При этом значение степени десорбции 
для сорбентов Д-800 и ФД-Zr фактически остается постоянным в интервале 1‒7 суток, что сви-
детельствует о том, что десорбция происходит в течение первых суток и далее не меняется. Для 
сорбента ФД процесс десорбции протекает по-другому. Концентрация ионов Ni2+ после 1 суток 
контакта достигает максимального значения (4,4 мг/л), а затем постепенно уменьшается в 10 раз. 
Рассчитанные значения степени десорбции составляют при этом менее 1 % для Д-800 и ФД и в сред-
нем 8,5 % для ФД-Zr. Десорбция из ФД-Zr в кислом растворе увеличивается и является макси-
мальной при рН 3 (среднее значение 13,6 %) и минимальной при рН 8 (среднее значение 8,4 %), 
т. е. в последнем случае очень близка десорбции в дистиллированной воде. Наблюдаемая зависи-
мость от рН опять-таки свидетельствует о преимущественной десорбции ионообменно погло-
щенных ионов Ni2+, которая увеличивается в кислой среде. Степень десорбции из ФД немного 
возрастает в кислом растворе, поскольку увеличивается растворимость гидрофосфатов, и прак-
тически не изменяется в растворе с рН 8. При этом сохраняется увеличение концентрации ионов 
Ni2+ до 5,5‒6,2 мг/л в первые сутки и постепенное снижение в течение 7 суток до 0,6‒0,8 мг/л. 
Такую закономерность можно объяснить десорбцией на первом этапе физически связанных с по-
верхностью ионов Ni2+ и их вторичной адсорбцией с формированием гидрофосфата Ni2+. Инте-
ресные результаты получены по зависимости десорбции от рН для Д-800. Наблюдается сниже-
ние десорбции и в кислой и в щелочной среде, что очевидно свидетельствует о химических 
трансформациях насыщенного сорбента при подкислении раствора. Но в целом значения степе-
ни десорбции в интервале рН 3‒8 для ФД и Д-800 не превышают 1 %. Значительно более высо-
кая степень десорбции Ni2+ и Zn2+, наблюдаемая в [12] для доломита, очевидно обусловлена бо-
лее низкими значениями рН раствора, приводящими к растворению карбонатов.

Представленные в работе данные свидетельствуют о том, что небольшая сорбционная ем-
кость по Ni природного и термоактивированного доломита, отмеченная во многих работах, свя-
зана с недостижением нужной активности (щелочности) термообработанного доломита, ввиду 
недостаточно высокой температуры или времени термообработки.

Заключение. Таким образом, адсорбция/десорбция ионов Ni2+ в водных растворах зависит 
от химического состава сорбента и реализуемого механизма поглощения. Установлено, что тер-
мически активированный при 800 °С доломит (Д-800) характеризуется наиболее высокой сорб-
ционной емкостью (364 мг/г), при этом при исходной концентрации ионов Ni2+ 50 мг/л достигает-
ся очистка водных растворов до минимальных норм ПДК (для водоемов рыбохозяйственного 
назначения менее 0,01 мг/л). Выявлено, что поглощение ионов Ni2+ сорбентом Д-800 обусловлено 
гетерогенным осаждением основного карбоната никеля, а в случае фосфатированного доломита 
ФД образуется гидрофосфат Ni. Результаты десорбции ионов Ni2+ из насыщенных сорбентов 
свидетельствуют о протекании ионного обмена с участием аморфного фосфата Zr для образца 
ФД-Zr. При этом наименьшую степень десорбции (<1 %) показали образцы Д-800 и ФД. В дина-
мической сорбции гранульный сорбент Д-800 обеспечивает очистку до уровня ПДК питьевой 
воды (менее 0,1 мг/л) более 1000 колоночных объемов растворов с С0 = 10 мг/л при линейной ско-
рости фильтрации 20 м/ч.
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