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In the article, the analogue of a RSA-cryptosystem in general quadratic unique factorization domains is obtained. A scheme
of digital signature on the basis of the generalized RSA-cryptosystem is suggested. The analogue of Wiener’s theorem on low
private key is obtained. We prove the equivalence of the problems of generalized RSA-modulus factorization and private key
search when the domain of all algebraic integer elements of the quadratic field is Euclidean. A method to secure the generalized
RSA-cryptosystem of the iterated encryption cracking is proposed.
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Llens maHHOM pabOTHI 3aKIIOYAETCs B MOCTPOCHUN aHAJora RSA-kpuITOCHCTEMBI B KBaJpaTHUHBIX (PaKTOPHATBHBIX
KoJlblax. B paboTe INpeasokeH aJrOpUTM HOCTPOCHMS BIEKTPOHHON 1HM(ppOBOH mnoamnucu. JlokazaH aHaior MoMcKa
CeKPETHOro KJo4a n (haKTOPH3aIHMK MOTYISI KPHIITOCUCTEMBI B CIIydae, KOTAA [eJIble anreOpandecKue 3JIeMEHTHI IOJIs
o0pasyioT EBknnmoBo koib1o. JlaHBI OrpaHWYEHNS Ha MapaMeTphl KPUITOCUCTEMBI JUIS 3alIUTHI OT METOAA MOBTOPHOTO
udposanus. Tak jke IPOBEIEHO HCCIIEIOBAHNE CKOPOCTH pabOTHI U B3JI0OMa MOJYUYSHHONW KPUIITOCUCTEMBI.

Karouesvie cnosa: RSA-xpunrocucrema, 31eKTpoHHAS IH(POBast MOAIHCEH, (haKTOPHATBLHOE KOJIBIO, EBKINI0BO KOIBIIO,
KBaJIPaTUYHOE YHCIIOBOE TIOJIE.

In 1978 there was constructed [1] one of the most high-usage public-key cryptosystem, which is
named as RSA-cryptosystem and is based on the difficulty of the factorization of big natural numbers.
In the papers [2—6] there were obtained and investigated analogues of RSA-cryptosystem based on using
of polynomials and Gaussian integers instead of natural numbers. The present paper is devoted to
constructing and analysis of RSA-cryptosystem in the domain of algebraic integer elements of a general
quadratic number field.

Let p#1 be an integer squarefree number. Denote by Z[\/B] the domain of all integer algebraic
elements of the quadratic number field Q[+/p] and we assume that Z[\/B] is a unique factorization
domain. It is known [7] that Z[\/p]={a +b:/p |a,b e Z} if p#1(mod 4), and Z[\/p]={(a +b/p)2|a,

beZ,a=b(mod2)} if p=1(mod4). Let the norm v, in Z[\/B ] be defined by the relation
vpla -l—b\/E) =| a’ —pb2 l, a +b\/5 € Z[\/E]. We recall that a domain K is called Euclidean if one can
define a function v:K\{0} > NuU{0} such that for any a, b € K\ {0} the inequality v(ab)>=>v(a)
holds, and for any a, b€ K\{0} one can find elements g, » € K such that a =bg +r, where r =0 or
v(r) <v(b). There exist exactly five Euclidean imaginary quadratic domains Z[\/E ] forp=-1,-2,-3,
—7,-11), and exactly sixteen Euclidean real quadratic domains Z[\/B ] (forp=2,3,5,6,7,11,13,17,19,
21, 29, 33,37, 41, 57, 73) with respect to the norm v,,. In another quadratic domains there doesn’t exist
a norm, with respect to which these domains will be Euclidean [7].
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Let J, be the set of all invertible elements of Z[\/B ] with zero. For any N € Z[\/E ]\ J, denote by
Z N[\/B ] and Z*}v[\/g ] the additive group of residue classes modulo N and the multiplicative group of
primitive residue classes modulo N respectively. Let a,(N)=|Z N[\/E]L (pp(N)=|Z§v[ p]l. An
element p e Z[\/B 1\J, is called prime element if for any divisor g of p there holdsge J,or p/geJ,.
Any prime element p >1 of Z will be called a prime number.

In further we suppose that Z[\/B ] is a unique factorization domain.

Propositionl. Forany N € Z[\/E]\Jp there holds o.,(N) =v,(N).

P ro o f. At first we prove that the function o, :Z[\/E] \J, = N is totally multiplicative. Let Ny,
N, eZ[\/B]\Jp, op(Ny)=my, oy(Np)=mj. Let x1,...,Xp, Y1,...,Vm, b€ elements of Z[\/B] such
that x; # x;(mod Ny) foranyi,j=1,...,my,i# j,and y; # y,;(mod N;) foranyi,j=1,...,mp,i# j.It’s
easy to see that the set {x; + N1y, [i=1,...,m1,j=1,...,my} forms a complete residues system modulo
N]Nz, hence, Otp(N1N2) =mmy.

Let NeZ\J,. If p#l(mod4), then a;+bi\Jp=as+by\fp(mod N) iff a; =ay(mod N) and
by =by(mod N), hence, a,(N)= N2 If p=1l(mod4) and N is odd, then (g +b1\/5)/2 =
(az +b2\/5)/2(mod N) iff a;=a;(mod N) and b; =by(mod N), hence, a,(N)= N2 Suppose that
p=1(mod4), N=2%, keN. Let (a;+bi\p)/2=(as+by:/p)/2(mod N), where a;=b;(mod N),
a; =by(mod N). It’s easy to see that there exist exactly 22kl pairs (ay,by),.. .,(a22k,l ,bzzk—l) such that
(a; +b,~\/5)/2$(aj +b_,~\/5)/2(rnod N) for any i, j = 1,...,221‘_1, i# j, where a;, b;, a;, b; are even.
Analogously there exist exactly 22kl pairs (ocl,Bl),...,(OLZZk_l ,Bsz_l) such that (o; +[3,-\/E)/2 *
(o +Bj\/5)/2(m0d N) for any i,j= 1,...,22k_1, i#j, where a;, B;, a;, B, are odd. Hence,
ocp(2k y=2%"1 422k =92k Taking into account the total multiplicativity of the function o, we
conclude that a., (N) = v, (N) forany N eZ\J,.

Let N e Z[\/p]\J,. Since x = y(mod N) iff x = y(mod N) foranyx, y € Z[\/p], soa,(N)=a,(N),
where N is the conjugate number to N. So, o, (N) = \/ap(N)(xp(ﬁ) = \/ap(N]\_f) = \/vp (Nﬁ) =Vp(N).
The proposition is proved.

Proposition?2. Forany NeZ[\Jp]\J, there holds ¢,(N)=[Trvp(p) " (vo(pi)—1),
where N = Hf;lpl-qi , pi are distinct prime elements from Z[\/B], g €N.

Proof LetNy, N, € Z[\/E]\Jp be coprime. Since Zjlez [p]= Zjvl [p]><Z>;\f2 [P], sO0 @p(NN3) =
Pp(N1)Pp(N2).

Let p be a prime element of Z[\/E], keN. It’s easy to see that @,(p)=a,(p)—-1, and
0p(p*) =0, (pF)—a,(p*¥™) if k>1. By proposition 1, we have @,(p*)= (v, (p)* " (vp(p)-1).
Since the function @, is multiplicative, so the statement of the proposition is valid.

The Lagrange theorem immediately implies the following statement, which is an analogue of the
Euler theorem.

Proposition 3. Let NEZ[\/B]\J‘), then for any meZ[\/B], (m,N)=1, there holds
m® ™) =1(mod N).

Corollaryl Let p be a prime element of Z[\/E], then for any meZ[\/E] there holds
m"PP) = m(mod p).

It’s easy to see that there holds an analogue of the Chinese remainder theorem in the domain Z[\/E ].

Propositiond4. Let my,...,my, Ci,...,Ck eZ[\/E], (m;,m;)=1for anyi# j. Then the system of

congruencies x=c;(modm;), i=1,....,k, has a unique solution x= z;‘:lcixi —(mod m), where
m . n;

m= Hf;lmi, X; € Z[\/B], —x; =1(mod m;), i=1,...,k.
m

1

The following three statements are analogues of Wilson’s, Lucas’ [8] and Pocklington’s criterions [9]
of primality.
Proposition5. An element p e Z[\/E] \J,, is prime iff there holds the congruence

Il x=-1(mod p).
erp[\/B],x:&O
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Proof If pis prime, then for any x e Z;[\/E], x #=x1(mod p) there exists a unique y e Z;[\/B],
vy # x, such that xy=1(mod p). Hence, erZp[ Jolar0t = —1(mod p). If p is not prime, then the ring
Z p[ﬁ ] has divisors of zero, so [, 2 plplaz0® = O(mod p). This contradiction finishes the proof.

Proposition6.4n element NeZ[\/B]\Jp is prime iff there exists an[\/B], (a,N)=1, such

that there holds: 1) PG 1(mod N), 2) a CpMDla 1(mod N) for any prime divisor q of vo(N)—1.

Proo f. If N is prime, then Z y[+/p] is a finite field, and we can get any primitive element a of this
field. Conditions 1) and 2) of the proposition are satisfied.

Let for any a there hold conditions 1) and 2) of the proposition. Hence, ord a =v,(/N) -1 in the group
Z'y [\/B ]. The Lagrange theorem implies that (v, (N) —1) | @, (N). By proposition 1, ¢, (N) <a,(N)-1=
vp(N)—1. Consequently, @,(N)=a,(N)—1. The last one implies the primality of the element N.
The proposition is proved.

Proposition7. Let Ne Z[\/B]\Jp and there exists a prime number q > \|v,(N) —1 such that
q| (vg (N?,_ 1). If there exists an element ae Z[\/E | such that the following two conditions hold:
1) a PV 1(mod N), 2) (a(vp(N) I/q —1,N)=1; then the element N is prime in Z[\/E].

P r o o f. Let the conditions of the proposition be satisfied but N is not prime element of Z[/p].
Hence, there exists a prime element p € Z[/p] such that p| N and v, (p) < /v, (N).Since g > /v, (N) -1,
so (¢q,vp(p)—1)=1 and therefore there exists a natural number u such that ug =1(modv,(p)—1).
Consequently, by condition 1) and proposition 3, we have

a(Vp(N)_l)/q Eauq(Vp(N)—l)/q _ a”(Vp(N)_l)

=1(mod p).

The last one contradicts with condition 2). The proposition is proved.

Algorithm of the generalized RSA-cryptosystem. Any subscriber 4 chooses two distinct big
prime elements p 4, g4 eZ[\/B] and calculates @,(N4), where N4 = p4q,. Further A chooses a
randomnaturalnumber e4 €[1, ¢, (N 4)] and finds anatural numberd 4 suchthat e 4d 4 =1(mod ¢, (N 4))
with the help of the extended Euclidean algorithm [8]. The pair (N 4,e4) is a public key of 4, the pair
(N4,d4) is a private key of 4. Then f4:Zy, [\/E] —>7Zy, [\/B], fa(x)=x4(mod N 4), is an
encryption function of 4, the function f1':Zy ,[\Jp]1=Zy [\p), fi'(x)=x"(mod N,) is a
decryption function of A. Any such triple (N 4,e4,d 4) is called parameters of the generalized RSA-
cryptosystem. Corollary 1 implies the correctness of the work of the the generalized RSA-cryptosystem.

Scheme of digital signature based on the generalized RSA-cryptosystem. Suppose that a subsc-
riber 4 wants to send to a subscriber B a signed message (m, P), where m € Z y [\/E ] is a secret message,
PeZN[\/B] is a signature of 4 (open text), where N =N, if vo(N,4)<v,(Np), and N=Np if
Vp(N 4) > v, (N ). Suppose that for any two RSA-modulus Ny and N;, v, (N1) <v,(N3), there is defined
an injective mapping gy, v, : Z n; [\/E 1=>Zy, [\/B ] such that values of the mappings gy, v, and g]_v]1 Ny
are easy computable. If v,(N 4)<v,(Np), then the subscriber 4 send to B the pair (m,P), where
my=fg(m), Pi=fp(gn,ng(f1 (P). The subscriber B computes my=fz (m), Py=
fa (gxllA,NB (f5'(P))). If vo(N 4)>v,(Np), then the subscriber 4 send to B the pair (m, ), where
my = fp(m), Pi=f1'(gnzn,(f5(P)). The subscriber B computes my= [z (m), Py=
fgl(g]_le N (f4(PR))). Then, by corollary 1, my, =m, P, = P.

Anal);sis of security of the generalized RSA-cryptosystem. It’s easy that knowledge of the RSA-
modulus factorization N = pg gives an effective way to find the private key. The following theorem
establishes the inverse statement and in the case of classical RSA-cryptosystem is given in [11, Ch. 14].

Theorem 1. Let the domain Z[\/E | be Euclidean, (N,e,d) be parameters of the generalized RSA-
cryptosystem. If the number d is known, then the number N can be effectively factorized with probability

at least — at polynomial, with respect to logv,(N), number of arithmetic operations in Z[\/B ]

Proof Lets=ed —1=2"u, wheret, u N, u is odd. Since ¢p(N)|s, so x* =1(mod N) for any
x €Z y[p]. Construct the set

B={xeZy[p]|F €{0,....1—1}: x>’ =—1(mod N) or x" =1(mod N)}.
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Let A= Z}[p] \ B. Let’s consider an arbitrary element a € A. Take the smallest natural number £ such
that ¢® “ =1(mod N). Let b = azk_lu (mod N). It’s easy to see that 5> =1(mod N) and b #+1(mod N).
Hence, (b—1,N) is a nontrivial divisor of N. There exists a constant y, €(0,1) such that for any
a,be Z[\/B] \{0}, vp(a)Zv,y(b), one can find ¢, re Z[\/B] such that a=bg+r, where r=0 or
Vo (r) <v,vp (D) [10]. Hence, the greatest divisor (b —1, N) can be computed with the help of the Euclidean
algorithm at polynomial number on logv,(N) of arithmetic operations in Z[\/E ] [7]. It remains to show

N
that |B|s%).

Let N = pg, where p, g are distinct prime elements of Z[\/E]. Let @p(p)=2"u1, ¢5(q)=2"%us,
where vi, vy, uy, uy €N, ujand u; are odd. Denote v = min{v;,v,}, K = (u,u; )(u,u; ). It’s easy to see that
the congruence x" =1(mod N) is equivalent to the *system ulcigax = 0(mod ¢, (p)), ulogB =
0(mod @, (g)), where a and f3 are primitive elements in Z ,[p] and Z ,[p] respectively. Since u is odd,
so, by proposition 4, the congruence x" =1(mod N) has exactly K solutions. Let’s consider the
congruence x2u =—1(mod N), where je{0,....,t—1}. If j<v, then the similar arguments imply
that the number of solutions is 4/ K. If j>v, then the congruence has no solutions. Therefore

v
|B|=(1+1+4+...+4" HK = 4 Jr2K. Since ¢, (N)=2""2uuy 24"K, so ﬂsl The theorem
is proved.

(Pp(N)

Remark 1l As in the case of classical RSA-cryptosystem the question on the equivalence of
breaking of the generalized RSA-cryptosystem and factorization of the RSA-modulus is open.

The following theorem is an analogue of the Wiener theorem on low private key for the classical
RSA-cryptosystem [11, Ch. 14].

Theorem?2. Let (N,e,d), N = pq, be parameters of the generalized RSA-cryptosystem such that

Vo(q) <vo(p) < a’vy(q), where o >1. If d < —— (v N))W', then the number d can be effectivel
P q P p P(q f m( P( ﬂ 'y

computed at polynomial, with respect to logv,(N), number of arithmetic operations in 7.
Proof Let N= pq, where p, g are distinct prime elements of Z[\/B]. Let ed -1=ko,(N), keN.

Since vp(p) +vp(q) < (o +1){/vp(N), so
Vo(N) = @p(N)=vp(p)+vp(q) =1 <(a+1){vy(N). M
We have k@, (N)<ed, e<@,(N). Therefore k < d. The last one implies the relations

(a+1)k < (a+1) - 1

< . )
d\ve(N)  vp(N) 2d°

In view of (1) and (2) we get

e k| [1=kryM =g, (V)| _ @+ Do) _ 1 5
vo(N) d vo(N)d | (N 242
Relation (3) means that S is a successive fraction for the non-secret fraction ) Hence, the
Vo

fraction k can be computed effectively with the help of the Euclidean algorithm in Z. The theorem is

proved.

One of the well-known methods of breaking of RSA-cryptosystem is the method of iterated
encryption. Let (N, e,d) be parameters of the generalized RSA-cryptosystem. Let y = x°(mod N) be an
encrypted message xe Z N[\/E ]. To try to find the original text x a cryptanalytic computes the terms of
the sequence y; =y° (mod N), i=1,2,..., until one has y,, = y for the first time. It’s easy to see that
Vm-1 = X. So, we need to choose the parameters of the generalized RSA-cryptosystem to make the value
m to be quite big.
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Proposition8. Let N = pq, p, q be distinct prime elements of Z[\/B], Qp(p)=rk, ©,(q)=sl,

where r and s are distinct prime numbers, (r,k)=(s,[)=1.1f ye Z#}V[\/B] is a random element, then
P(rs|ord y)=(1—r)(1-s7").

P ro o f For any # |k, t; |/ there exist exactly o¢(rt;)p(stp) of elements y eZ’;v[\/E] such that
ord y =rs(t1,t,). Consequently, the number of elements y € Z’;V[\/B ] such that rs|ord y is equal to

2 o(rt)e(sta)=(r=1)(s=1) X @(t1)e(r2) = (r—1)(s —1)kl. @

1kl k.ol

So, the statement of the proposition follows from relation (4) and equality | Z}[JB 1= rksl .

Theorem3. Let (N,e,d), N = pq, be parameters of the generalized RSA-cryptosystem. Suppose
that the numbers ¢,(p), ©,(q) have distinct prime divisors r, s respectively, and the numbers r —1,
s —1 have prime divisors n, s\ respectively, then P(m 2 rs1) 2 (1- r_l)(l - s_l)(l - rl_l)(l - sfl), where
m is the smallest natural number such that y¢ =y@modN), ye Z»}v[\/g] is a random element.

Pro o f. Note that y¢ = y(mod N) iff ord y|(e™ —1). By proposition 8,

P(rs|(e™ —1)) = P(rs|ord y)=(1-r")(1-s7").
Applying Theorem 14.1 [11], we conclude that
P(m > rs1) 2 P(rys; | m) > P(rsy | ord e,rs |ord y) > (1— I )(1—- s_l)(l - )(1—- sf]).

The theorem is proved.

R e m ar k 2. To secure the generalized RSA-cryptosystem of the iterated encryption attack we
should take prime elements p, g€ Z[\/E] such that one can find big distinct prime divisors 7, s of
¢p(p), ¢p(g) and one can find big prime divisors 71, sy of ¥ —1, 5 —1.

Remark3.If N = pg, where p and g are such that the difference|v,(p)—v,(¢)|is small, then it is
easy to find the representation N = t? —s%, where , se Z[\/B] and this representation gives us the
factorization of N. Hence, the difference |v,(p)—v,(¢)| should be quite large.

R e m ar k 4. The generalized RSA-cryptosystem provides more security than the classical variant
of RSA-cryptosystem, since the number of elements which are chosen to represent the message m is
about square of those used in the classical variant. This advantage enables to use shorter keys than in the
classical version of RSA-cryptosystem. Note that all our results cover the case of the classical RSA-
cryptosystem: it’s enough to take the ring Z instead of Z[\/B ], and to define the norm of a €Z as the
absolute value | a|.

Estimate of computational efficiency of the generalized RSA-cryptosystem in imaginary quadratic
domains. Let Z[\/E] — imaginary quadratic domain. We say that an element x = x; + xz\/E € Z[\/E] is
n-bit if integers x| and x, have less than n +1 bits in the binary value. Let p = p; + p» \/5, qg=q+ Q2\/E
be distinct prime n-bit elements of the domain Z[\/E ]. Let’s call RSA-cryptosystem with parameters p
and g n-bit. Multiplication modulo N = pq of two n-bit elements of the domain Z[\/B ] has the complexity
O(n?) and involution of n-bit element x e Z[\/E ] in the domain Z[\/B ] has the complexity O(n” logk).
So encryption and decryption using the generalized RSA-cryptosystem in the domain Z[\/B ] have the
complexity O(n? logn). The complexity of generating the pair of keys d, e is defined by the complexity
of calculating of inverse element in the domain Z[\/B ] So it has the complexity O(nz). Note that the
complexity of encrypting, decrypting and generation of keys d, e using n-bit RSA-cryptosystem in the
domain Z[\/B] can be estimated as O(M), where M — the number of binary operations to encrypt,
decrypt and generation of keys in classical n-bit RSA-cryptosystem. Breaking of classical n-bit
cryptosystem using checking of every possible message has the complexity 0(4”;12 logn), analogical
breaking for n-bit RSA-cryptosystem in the domain Z[\/E] has the complexity O 16" n? logn). And
also the number of binary operations to factorize RSA-modulus in the domain Z[/p], is not less than
the number of binary operations to factorize RSA-modulus in classical RSA-cryptosystem.

E x am p le. Let the subscriber 4 wishes to send the secret message m =1+ with the signature
P = 2i to the subscriber B with the help of the generalized RSA-cryptosystem in Z[\/B ] with p=—1. Let
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(NA,eA,dA) = (589,7,98743) and (NB,eB,dB) = (559,13,167173), 8Np,Ny (X) =x1 +ixy + N 4Z]i],
X € Z ygli], where xi, x are the smallest nonnegative integers such that X = x| +ix, + NpZ[i]. The
subscriber 4 computes

my =m°B (mod Np)=495+495i
and
P, =(P°B (mod Ng))“4 (mod N 4) =192i.

So, the encrypted signed message is (my, P) = (495 + 495i,192i). The subscriber B gets the pair (my, P;)
and calculates

mzzmldB(modNB)=1+i

and
Py = (P4 (mod N 4))*8 (mod N) = 2i.

So the pair (m,, P;) is the decrypted message.
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