2015

сентябрь-октябрь

Том 59 № 5

UDC 511.622+519.719.2

M. VASKOUSKI, N. KONDRATYONOK

ANALOGUE OF THE RSA-CRYPTOSYSTEM IN QUADRATIC UNIQUE FACTORIZATION DOMAINS

(Communicated by Academician N. A. Izobov)

Belarusian State University, Minsk, Belarus vaskovskii@bsu.by; nkondr2006@rambler.ru

In the article, the analogue of a RSA-cryptosystem in general quadratic unique factorization domains is obtained. A scheme of digital signature on the basis of the generalized RSA-cryptosystem is suggested. The analogue of Wiener's theorem on low private key is obtained. We prove the equivalence of the problems of generalized RSA-modulus factorization and private key search when the domain of all algebraic integer elements of the quadratic field is Euclidean. A method to secure the generalized RSA-cryptosystem of the iterated encryption cracking is proposed.

Keywords: RSA-cryptosystem, digital signature, unique factorization domain, euclidean domain, quadratic number field.

М. М. ВАСЬКОВСКИЙ, Н. В. КОДРАТЕНОК

АНАЛОГ RSA-КРИПТОСИСТЕМЫ В КВАДРАТИЧНЫХ ФАКТОРИАЛЬНЫХ КОЛЬЦАХ

Белорусский государственный университет, Минск, Беларусь vaskovskii@bsu.by; nkondr2006@rambler.ru

Цель данной работы заключается в построении аналога RSA-криптосистемы в квадратичных факториальных кольцах. В работе предложен алгоритм построения электронной цифровой подписи. Доказан аналог поиска секретного ключа и факторизации модуля криптосистемы в случае, когда целые алгебраические элементы поля образуют Евклидово кольцо. Даны ограничения на параметры криптосистемы для защиты от метода повторного цифрования. Так же проведено исследование скорости работы и взлома полученной криптосистемы.

Ключевые слова: RSA-криптосистема, электронная цифровая подпись, факториальное кольцо, евклидово кольцо, квадратичное числовое поле.

In 1978 there was constructed [1] one of the most high-usage public-key cryptosystem, which is named as RSA-cryptosystem and is based on the difficulty of the factorization of big natural numbers. In the papers [2–6] there were obtained and investigated analogues of RSA-cryptosystem based on using of polynomials and Gaussian integers instead of natural numbers. The present paper is devoted to constructing and analysis of RSA-cryptosystem in the domain of algebraic integer elements of a general quadratic number field.

Let $\rho \neq 1$ be an integer squarefree number. Denote by $\mathbb{Z}[\sqrt{\rho}]$ the domain of all integer algebraic elements of the quadratic number field $\mathbb{Q}[\sqrt{\rho}]$ and we assume that $\mathbb{Z}[\sqrt{\rho}]$ is a unique factorization domain. It is known [7] that $\mathbb{Z}[\sqrt{\rho}] = \{a + b\sqrt{\rho} \mid a, b \in \mathbb{Z}\}$ if $\rho \neq 1 \pmod{4}$, and $\mathbb{Z}[\sqrt{\rho}] = \{(a + b\sqrt{\rho})/2 \mid a, b \in \mathbb{Z}, a \equiv b \pmod{2}\}$ if $\rho \equiv 1 \pmod{4}$. Let the norm v_{ρ} in $\mathbb{Z}[\sqrt{\rho}]$ be defined by the relation $v_{\rho}(a + b\sqrt{\rho}) = |a^2 - \rho b^2|$, $a + b\sqrt{\rho} \in \mathbb{Z}[\sqrt{\rho}]$. We recall that a domain \mathbb{K} is called Euclidean if one can define a function $v : \mathbb{K} \setminus \{0\} \to \mathbb{N} \cup \{0\}$ such that for any $a, b \in \mathbb{K} \setminus \{0\}$ the inequality $v(ab) \ge v(a)$ holds, and for any $a, b \in \mathbb{K} \setminus \{0\}$ one can find elements $q, r \in \mathbb{K}$ such that a = bq + r, where r = 0 or v(r) < v(b). There exist exactly five Euclidean imaginary quadratic domains $\mathbb{Z}[\sqrt{\rho}]$ (for $\rho = -1, -2, -3,$ -7, -11), and exactly sixteen Euclidean real quadratic domains $\mathbb{Z}[\sqrt{\rho}]$ (for $\rho = 2, 3, 5, 6, 7, 11, 13, 17, 19,$ 21, 29, 33, 37, 41, 57, 73) with respect to the norm v_{ρ} . In another quadratic domains there doesn't exist a norm, with respect to which these domains will be Euclidean [7].

[©] Васьковский М. М., Кондратенок Н. В., 2015.

Let J_{ρ} be the set of all invertible elements of $\mathbb{Z}[\sqrt{\rho}]$ with zero. For any $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ denote by $\mathbb{Z}_{N}[\sqrt{\rho}]$ and $\mathbb{Z}_{N}^{*}[\sqrt{\rho}]$ the additive group of residue classes modulo N and the multiplicative group of primitive residue classes modulo N respectively. Let $\alpha_{\rho}(N) = |\mathbb{Z}_{N}[\sqrt{\rho}]|$, $\varphi_{\rho}(N) = |\mathbb{Z}_{N}^{*}[\sqrt{\rho}]|$. An element $p \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ is called prime element if for any divisor q of p there holds $q \in J_{\rho}$ or $p / q \in J_{\rho}$. Any prime element p > 1 of \mathbb{Z} will be called a prime number.

In further we suppose that $\mathbb{Z}[\sqrt{\rho}]$ is a unique factorization domain.

Proposition 1. For any $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ there holds $\alpha_{\rho}(N) = v_{\rho}(N)$.

Proof. At first we prove that the function $\alpha_{\rho}: \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho} \to \mathbb{N}$ is totally multiplicative. Let N_1 , $N_2 \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$, $\alpha_{\rho}(N_1) = m_1$, $\alpha_{\rho}(N_2) = m_2$. Let $x_1, \dots, x_{m_1}, y_1, \dots, y_{m_2}$ be elements of $\mathbb{Z}[\sqrt{\rho}]$ such that $x_i \neq x_j \pmod{N_1}$ for any $i, j = 1, \dots, m_1, i \neq j$, and $y_i \neq y_j \pmod{N_2}$ for any $i, j = 1, \dots, m_2, i \neq j$. It's easy to see that the set $\{x_i + N_1y_j \mid i = 1, \dots, m_1, j = 1, \dots, m_2\}$ forms a complete residues system modulo N_1N_2 , hence, $\alpha_{\rho}(N_1N_2) = m_1m_2$.

Let $N \in \mathbb{Z} \setminus J_{\rho}$. If $\rho \not\equiv 1 \pmod{4}$, then $a_1 + b_1 \sqrt{\rho} \equiv a_2 + b_2 \sqrt{\rho} \pmod{N}$ iff $a_1 \equiv a_2 \pmod{N}$ and $b_1 \equiv b_2 \pmod{N}$, hence, $\alpha_{\rho}(N) = N^2$. If $\rho \equiv 1 \pmod{4}$ and N is odd, then $(a_1 + b_1 \sqrt{\rho})/2 \equiv (a_2 + b_2 \sqrt{\rho})/2 \pmod{N}$ iff $a_1 \equiv a_2 \pmod{N}$ and $b_1 \equiv b_2 \pmod{N}$, hence, $\alpha_{\rho}(N) = N^2$. Suppose that $\rho \equiv 1 \pmod{4}$, $N = 2^k$, $k \in \mathbb{N}$. Let $(a_1 + b_1 \sqrt{\rho})/2 \equiv (a_2 + b_2 \sqrt{\rho})/2 \pmod{N}$, where $a_1 \equiv b_1 \pmod{N}$, $a_2 \equiv b_2 \pmod{N}$. It's easy to see that there exist exactly 2^{2k-1} pairs $(a_1, b_1), \dots, (a_{2^{2k-1}}, b_{2^{2k-1}})$ such that $(a_i + b_i \sqrt{\rho})/2 \not\equiv (a_j + b_j \sqrt{\rho})/2 \pmod{N}$ for any $i, j = 1, \dots, 2^{2k-1}$, $i \neq j$, where a_i, b_i, a_j, b_j are even. Analogously there exist exactly 2^{2k-1} pairs $(\alpha_1, \beta_1), \dots, (\alpha_{2^{2k-1}}, \beta_{2^{2k-1}})$ such that $(\alpha_i + \beta_i \sqrt{\rho})/2 \not\equiv (\alpha_j + \beta_j \sqrt{\rho})/2 \pmod{N}$ for any $i, j = 1, \dots, 2^{2k-1}$, $i \neq j$, where $\alpha_i, \beta_i, \alpha_j, \beta_j$ are odd. Hence, $\alpha_{\rho}(2^k) = 2^{2k-1} + 2^{2k-1} = 2^{2k}$. Taking into account the total multiplicativity of the function α_{ρ} we conclude that $\alpha_{\rho}(N) = v_{\rho}(N)$ for any $N \in \mathbb{Z} \setminus J_{\rho}$.

Let $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$. Since $x \equiv y \pmod{N}$ iff $\overline{x} \equiv \overline{y} \pmod{\overline{N}}$ for any $x, y \in \mathbb{Z}[\sqrt{\rho}]$, so $\alpha_{\rho}(N) = \alpha_{\rho}(\overline{N})$, where \overline{N} is the conjugate number to N. So, $\alpha_{\rho}(N) = \sqrt{\alpha_{\rho}(N)\alpha_{\rho}(\overline{N})} = \sqrt{\alpha_{\rho}(N\overline{N})} = \sqrt{\nu_{\rho}(N\overline{N})} = \nu_{\rho}(N)$. The proposition is proved.

Proposition 2. For any $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ there holds $\varphi_{\rho}(N) = \prod_{i=1}^{k} (v_{\rho}(p_i))^{q_i-1} (v_{\rho}(p_i)-1)$, where $N = \prod_{i=1}^{k} p_i^{q_i}$, p_i are distinct prime elements from $\mathbb{Z}[\sqrt{\rho}]$, $q_i \in \mathbb{N}$.

Proof. Let N_1 , $N_2 \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ be coprime. Since $\mathbb{Z}_{N_1N_2}^*[\rho] \cong \mathbb{Z}_{N_1}^*[\rho] \times \mathbb{Z}_{N_2}^*[\rho]$, so $\varphi_{\rho}(N_1N_2) = \varphi_{\rho}(N_1)\varphi_{\rho}(N_2)$.

Let *p* be a prime element of $\mathbb{Z}[\sqrt{\rho}]$, $k \in \mathbb{N}$. It's easy to see that $\varphi_{\rho}(p) = \alpha_{\rho}(p) - 1$, and $\varphi_{\rho}(p^{k}) = \alpha_{\rho}(p^{k}) - \alpha_{\rho}(p^{k-1})$ if k > 1. By proposition 1, we have $\varphi_{\rho}(p^{k}) = (v_{\rho}(p))^{k-1}(v_{\rho}(p) - 1)$. Since the function φ_{ρ} is multiplicative, so the statement of the proposition is valid.

The Lagrange theorem immediately implies the following statement, which is an analogue of the Euler theorem.

Proposition 3. Let $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$, then for any $m \in \mathbb{Z}[\sqrt{\rho}]$, (m, N) = 1, there holds $m^{\varphi_{\rho}(N)} \equiv 1 \pmod{N}$.

C or ollary 1. Let p be a prime element of $\mathbb{Z}[\sqrt{\rho}]$, then for any $m \in \mathbb{Z}[\sqrt{\rho}]$ there holds $m^{v_{\rho}(p)} \equiv m \pmod{p}$.

It's easy to see that there holds an analogue of the Chinese remainder theorem in the domain $\mathbb{Z}[\sqrt{\rho}]$. Proposition 4. Let $m_1, \dots, m_k, c_1, \dots, c_k \in \mathbb{Z}[\sqrt{\rho}], (m_i, m_j) = 1$ for any $i \neq j$. Then the system of congruencies $x \equiv c_i \pmod{m_i}, i = 1, \dots, k$, has a unique solution $x \equiv \sum_{i=1}^k c_i x_i \frac{m}{m_i} \pmod{m}$, where $m = \prod_{i=1}^k m_i, x_i \in \mathbb{Z}[\sqrt{\rho}], \frac{m}{m_i} x_i \equiv 1 \pmod{m_i}, i = 1, \dots, k$.

The following three statements are analogues of Wilson's, Lucas' [8] and Pocklington's criterions [9] of primality.

Proposition 5. An element $p \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ is prime iff there holds the congruence

$$\prod_{x \in \mathbb{Z}} \prod_{p [\sqrt{\rho}], x \neq 0} x \equiv -1 \pmod{p}.$$

19

Proof. If *p* is prime, then for any $x \in \mathbb{Z}_p^*[\sqrt{\rho}]$, $x \neq \pm 1 \pmod{p}$ there exists a unique $y \in \mathbb{Z}_p^*[\sqrt{\rho}]$, $y \neq x$, such that $xy \equiv 1 \pmod{p}$. Hence, $\prod_{x \in \mathbb{Z}_p[\sqrt{\rho}], x \neq 0} x \equiv -1 \pmod{p}$. If *p* is not prime, then the ring $\mathbb{Z}_p[\sqrt{\rho}]$ has divisors of zero, so $\prod_{x \in \mathbb{Z}_p[\sqrt{\rho}], x \neq 0} x \equiv 0 \pmod{p}$. This contradiction finishes the proof.

Proposition 6. An element $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ is prime iff there exists $a \in \mathbb{Z}[\sqrt{\rho}]$, (a, N) = 1, such that there holds: 1) $a^{v_{\rho}(N)-1} \equiv 1 \pmod{N}$, 2) $a^{(v_{\rho}(N)-1)/q} \not\equiv 1 \pmod{N}$ for any prime divisor q of $v_{\rho}(N)-1$.

P r o o f. If N is prime, then $\mathbb{Z}_N[\sqrt{\rho}]$ is a finite field, and we can get any primitive element *a* of this field. Conditions 1) and 2) of the proposition are satisfied.

Let for any *a* there hold conditions 1) and 2) of the proposition. Hence, ord $a = v_{\rho}(N) - 1$ in the group $\mathbb{Z}_{N}^{*}[\sqrt{\rho}]$. The Lagrange theorem implies that $(v_{\rho}(N)-1)|\phi_{\rho}(N)$. By proposition 1, $\phi_{\rho}(N) \le \alpha_{\rho}(N) - 1 = v_{\rho}(N) - 1$. Consequently, $\phi_{\rho}(N) = \alpha_{\rho}(N) - 1$. The last one implies the primality of the element *N*. The proposition is proved.

Proposition 7. Let $N \in \mathbb{Z}[\sqrt{\rho}] \setminus J_{\rho}$ and there exists a prime number $q > \sqrt{v_{\rho}(N)} - 1$ such that $q \mid (v_{\rho}(N) - 1)$. If there exists an element $a \in \mathbb{Z}[\sqrt{\rho}]$ such that the following two conditions hold: 1) $a^{v_{\rho}(N)-1} \equiv 1 \pmod{N}$, 2) $(a^{(v_{\rho}(N)-1)/q} - 1, N) = 1$; then the element N is prime in $\mathbb{Z}[\sqrt{\rho}]$.

P r o o f. Let the conditions of the proposition be satisfied but N is not prime element of $\mathbb{Z}[\sqrt{\rho}]$. Hence, there exists a prime element $p \in \mathbb{Z}[\sqrt{\rho}]$ such that $p \mid N$ and $v_{\rho}(p) \leq \sqrt{v_{\rho}(N)}$. Since $q > \sqrt{v_{\rho}(N)} - 1$, so $(q, v_{\rho}(p) - 1) = 1$ and therefore there exists a natural number u such that $uq \equiv 1 \pmod{v_{\rho}(p) - 1}$. Consequently, by condition 1) and proposition 3, we have

$$a^{(v_{\rho}(N)-1)/q} \equiv a^{uq(v_{\rho}(N)-1)/q} \equiv a^{u(v_{\rho}(N)-1)} \equiv 1 \pmod{p}$$

The last one contradicts with condition 2). The proposition is proved.

Algorithm of the generalized RSA-cryptosystem. Any subscriber A chooses two distinct big prime elements p_A , $q_A \in \mathbb{Z}[\sqrt{\rho}]$ and calculates $\varphi_{\rho}(N_A)$, where $N_A = p_A q_A$. Further A chooses a random natural number $e_A \in [1, \varphi_{\rho}(N_A)]$ and finds a natural number d_A such that $e_A d_A \equiv 1 \pmod{\varphi_{\rho}(N_A)}$ with the help of the extended Euclidean algorithm [8]. The pair (N_A, e_A) is a public key of A, the pair (N_A, d_A) is a private key of A. Then $f_A : \mathbb{Z}_{N_A}[\sqrt{\rho}] \to \mathbb{Z}_{N_A}[\sqrt{\rho}]$, $f_A(x) \equiv x^{e_A} \pmod{N_A}$, is an encryption function of A, the function $f_A^{-1} : \mathbb{Z}_{N_A}[\sqrt{\rho}] \to \mathbb{Z}_{N_A}[\sqrt{\rho}]$, $f_A^{-1}(x) \equiv x^{d_A} \pmod{N_A}$ is a decryption function of A. Any such triple (N_A, e_A, d_A) is called parameters of the generalized RSAcryptosystem. Corollary 1 implies the correctness of the work of the the generalized RSA-cryptosystem.

Scheme of digital signature based on the generalized RSA-cryptosystem. Suppose that a subscriber *A* wants to send to a subscriber *B* a signed message (m, P), where $m \in \mathbb{Z}_{N_B}[\sqrt{\rho}]$ is a secret message, $P \in \mathbb{Z}_N[\sqrt{\rho}]$ is a signature of *A* (open text), where $N = N_A$ if $v_\rho(N_A) \le v_\rho(N_B)$, and $N = N_B$ if $v_\rho(N_A) \ge v_\rho(N_B)$. Suppose that for any two RSA-modulus N_1 and N_2 , $v_\rho(N_1) \le v_\rho(N_2)$, there is defined an injective mapping $g_{N_1,N_2} : \mathbb{Z}_{N_1}[\sqrt{\rho}] \to \mathbb{Z}_{N_2}[\sqrt{\rho}]$ such that values of the mappings g_{N_1,N_2} and g_{N_1,N_2}^{-1} are easy computable. If $v_\rho(N_A) \le v_\rho(N_B)$, then the subscriber *A* send to *B* the pair (m_1, P_1) , where $m_1 = f_B(m)$, $P_1 = f_B(g_{N_A,N_B}(f_A^{-1}(P)))$. The subscriber *B* computes $m_2 = f_B^{-1}(m_1)$, $P_2 = f_A(g_{N_A,N_B}^{-1}(f_B^{-1}(P_1)))$. If $v_\rho(N_A) \ge v_\rho(N_B)$, then the subscriber *A* send to *B* the pair (m_1, P_1) , where $m_1 = f_B(m)$, $P_1 = f_A^{-1}(g_{N_B,N_A}(f_B(P)))$. The subscriber *B* computes $m_2 = f_B^{-1}(m_1)$, $P_2 = f_B^{-1}(m_1)$, $P_1 = f_A^{-1}(g_{N_B,N_A}(f_B(P)))$. The subscriber *B* computes $m_2 = f_B^{-1}(m_1)$, $P_2 = f_B^{-1}(g_{N_B,N_A}(f_A(P_1)))$. Then, by corollary 1, $m_2 = m$, $P_2 = P$.

Analysis of security of the generalized RSA-cryptosystem. It's easy that knowledge of the RSA-modulus factorization N = pq gives an effective way to find the private key. The following theorem establishes the inverse statement and in the case of classical RSA-cryptosystem is given in [11, Ch. 14].

The orem 1. Let the domain $\mathbb{Z}[\sqrt{\rho}]$ be Euclidean, (N, e, d) be parameters of the generalized RSAcryptosystem. If the number d is known, then the number N can be effectively factorized with probability at least $\frac{1}{2}$ at polynomial, with respect to $\log v_{\rho}(N)$, number of arithmetic operations in $\mathbb{Z}[\sqrt{\rho}]$.

Proof of Let $s = ed - 1 = 2^t u$, where t, $u \in \mathbb{N}$, u is odd. Since $\varphi_p(N) | s$, so $x^s \equiv 1 \pmod{N}$ for any $x \in \mathbb{Z}_N^*[\rho]$. Construct the set

$$B = \{x \in \mathbb{Z}_N^*[\rho] \mid \exists j \in \{0, \dots, t-1\} : x^{2^{j}u} \equiv -1 \pmod{N} \text{ or } x^u \equiv 1 \pmod{N} \}.$$

Let $A = \mathbb{Z}_{N}^{*}[\rho] \setminus B$. Let's consider an arbitrary element $a \in A$. Take the smallest natural number k such that $a^{2^{k}u} \equiv 1 \pmod{N}$. Let $b \equiv a^{2^{k-1}u} \pmod{N}$. It's easy to see that $b^{2} \equiv 1 \pmod{N}$ and $b \not\equiv \pm 1 \pmod{N}$. Hence, (b-1,N) is a nontrivial divisor of N. There exists a constant $\gamma_{\rho} \in (0,1)$ such that for any $a, b \in \mathbb{Z}[\sqrt{\rho}] \setminus \{0\}, v_{\rho}(a) \ge v_{\rho}(b)$, one can find $q, r \in \mathbb{Z}[\sqrt{\rho}]$ such that $a \equiv bq + r$, where $r \equiv 0$ or $v_{\rho}(r) \le \gamma_{\rho}v_{\rho}(b)$ [10]. Hence, the greatest divisor (b-1,N) can be computed with the help of the Euclidean algorithm at polynomial number on $\log v_{\rho}(N)$ of arithmetic operations in $\mathbb{Z}[\sqrt{\rho}]$ [7]. It remains to show that $|B| \le \frac{\varphi_{\rho}(N)}{2}$.

that $|B| \le \frac{\varphi_{\rho}(N)}{2}$. Let N = pq, where p, q are distinct prime elements of $\mathbb{Z}[\sqrt{\rho}]$. Let $\varphi_{\rho}(p) = 2^{v_1}u_1$, $\varphi_{\rho}(q) = 2^{v_2}u_2$, where $v_1, v_2, u_1, u_2 \in \mathbb{N}$, u_1 and u_2 are odd. Denote $v = \min\{v_1, v_2\}$, $K = (u, u_1)(u, u_2)$. It's easy to see that the congruence $x^u \equiv 1 \pmod{N}$ is equivalent to the system $u\log_{\alpha}x \equiv 0 \pmod{\varphi_{\rho}(p)}$, $u\log_{\beta}x \equiv 0 \pmod{\varphi_{\rho}(q)}$, where α and β are primitive elements in $\mathbb{Z}_p^*[\rho]$ and $\mathbb{Z}_q^*[\rho]$ respectively. Since u is odd, so, by proposition 4, the congruence $x^u \equiv 1 \pmod{N}$ has exactly K solutions. Let's consider the congruence $x^{2^{j}u} \equiv -1 \pmod{N}$, where $j \in \{0, \dots, t-1\}$. If j < v, then the similar arguments imply that the number of solutions is $4^j K$. If $j \ge v$, then the congruence has no solutions. Therefore $|B| = (1+1+4+\ldots+4^{v-1})K = \frac{4^v+2}{3}K$. Since $\varphi_{\rho}(N) = 2^{v_1+v_2}u_1u_2 \ge 4^v K$, so $\frac{|B|}{\varphi_{\rho}(N)} \le \frac{1}{2}$. The theorem is proved.

R e m a r k 1. As in the case of classical RSA-cryptosystem the question on the equivalence of breaking of the generalized RSA-cryptosystem and factorization of the RSA-modulus is open.

The following theorem is an analogue of the Wiener theorem on low private key for the classical RSA-cryptosystem [11, Ch. 14].

The orem 2. Let (N, e, d), N = pq, be parameters of the generalized RSA-cryptosystem such that $v_{\rho}(q) < v_{\rho}(p) < \alpha^2 v_{\rho}(q)$, where $\alpha > 1$. If $d < \frac{1}{\sqrt{2\alpha + 2}} (v_{\rho}(N))^{1/4}$, then the number d can be effectively computed at polynomial, with respect to $\log v_{\rho}(N)$, number of arithmetic operations in \mathbb{Z} .

Proof. Let N = pq, where p, q are distinct prime elements of $\mathbb{Z}[\sqrt{\rho}]$. Let $ed -1 = k\varphi_{\rho}(N), k \in \mathbb{N}$. Since $v_{\rho}(p) + v_{\rho}(q) < (\alpha + 1)\sqrt{v_{\rho}(N)}$, so

$$v_{\rho}(N) - \varphi_{\rho}(N) = v_{\rho}(p) + v_{\rho}(q) - 1 < (\alpha + 1)\sqrt{v_{\rho}(N)}.$$
(1)

We have $k\phi_{\rho}(N) \le ed$, $e \le \phi_{\rho}(N)$. Therefore $k \le d$. The last one implies the relations

$$\frac{(\alpha+1)k}{d\sqrt{\nu_{\rho}(N)}} \le \frac{(\alpha+1)}{\sqrt{\nu_{\rho}(N)}} < \frac{1}{2d^2}.$$
(2)

In view of (1) and (2) we get

$$\left|\frac{e}{v_{\rho}(N)} - \frac{k}{d}\right| = \left|\frac{1 - k(v_{\rho}(N) - \varphi_{\rho}(N))}{v_{\rho}(N)d}\right| \le \frac{(\alpha + 1)\sqrt{v_{\rho}(N)}}{v_{\rho}(N)d} < \frac{1}{2d^{2}}.$$
(3)

Relation (3) means that $\frac{k}{d}$ is a successive fraction for the non-secret fraction $\frac{e}{v_{\rho}(N)}$. Hence, the fraction $\frac{k}{d}$ can be computed effectively with the help of the Euclidean algorithm in \mathbb{Z} . The theorem is proved.

One of the well-known methods of breaking of RSA-cryptosystem is the method of iterated encryption. Let (N, e, d) be parameters of the generalized RSA-cryptosystem. Let $y = x^e \pmod{N}$ be an encrypted message $x \in \mathbb{Z}_N[\sqrt{\rho}]$. To try to find the original text x a cryptanalytic computes the terms of the sequence $y_i = y^{e^i} \pmod{N}$, i = 1, 2, ..., until one has $y_m = y$ for the first time. It's easy to see that $y_{m-1} = x$. So, we need to choose the parameters of the generalized RSA-cryptosystem to make the value m to be quite big.

Proposition 8. Let N = pq, p, q be distinct prime elements of $\mathbb{Z}[\sqrt{\rho}]$, $\varphi_{\rho}(p) = rk$, $\varphi_{\rho}(q) = sl$, where r and s are distinct prime numbers, (r,k) = (s,l) = 1. If $y \in \mathbb{Z}_N^*[\sqrt{\rho}]$ is a random element, then $\mathbb{P}(rs \mid \text{ord } v) = (1 - r^{-1})(1 - s^{-1}).$

P r o o f. For any $t_1 | k, t_2 | l$ there exist exactly $\varphi(rt_1)\varphi(st_2)$ of elements $y \in \mathbb{Z}_N^*[\sqrt{\rho}]$ such that ord $y = rs(t_1, t_2)$. Consequently, the number of elements $y \in \mathbb{Z}_N^*[\sqrt{\rho}]$ such that rs | ord y is equal to

$$\sum_{t_1|k,t_2|l} \varphi(rt_1)\varphi(st_2) = (r-1)(s-1)\sum_{t_1|k,t_2|l} \varphi(t_1)\varphi(t_2) = (r-1)(s-1)kl.$$
(4)

So, the statement of the proposition follows from relation (4) and equality $|\mathbb{Z}_{N}^{*}[\sqrt{\rho}]| = rksl$.

The orem 3. Let (N, e, d), N = pq, be parameters of the generalized RSA-cryptosystem. Suppose that the numbers $\varphi_{\rho}(p)$, $\varphi_{\rho}(q)$ have distinct prime divisors r, s respectively, and the numbers r-1, s-1 have prime divisors r_1 , s_1 respectively, then $\mathbb{P}(m \ge r_1 s_1) \ge (1-r_1^{-1})(1-r_1^{-1})(1-r_1^{-1})$, where m is the smallest natural number such that $y^{e^m} = y \pmod{N}$, $y \in \mathbb{Z}_N^*[\sqrt{\rho}]$ is a random element. P r o o f. Note that $y^{e^m} = y \pmod{N}$ iff ord $y \mid (e^m - 1)$. By proposition 8,

 $\mathbb{P}(rs \mid (e^m - 1)) \ge \mathbb{P}(rs \mid ord y) = (1 - r^{-1})(1 - s^{-1}).$

Applying Theorem 14.1 [11], we conclude that

 $\mathbb{P}(m \ge r_1 s_1) \ge \mathbb{P}(r_1 s_1 \mid m) \ge \mathbb{P}(r_1 s_1 \mid \text{ord } e, rs \mid \text{ord } y) \ge (1 - r^{-1})(1 - s^{-1})(1 - r_1^{-1})(1 - s_1^{-1}).$

The theorem is proved.

R e m a r k 2. To secure the generalized RSA-cryptosystem of the iterated encryption attack we should take prime elements p, $q \in \mathbb{Z}[\sqrt{\rho}]$ such that one can find big distinct prime divisors r, s of $\varphi_{\rho}(p)$, $\varphi_{\rho}(q)$ and one can find big prime divisors r_1, s_1 of r-1, s-1.

R e m a r k 3. If N = pq, where p and q are such that the difference $|v_{\rho}(p) - v_{\rho}(q)|$ is small, then it is easy to find the representation $N = t^2 - s^2$, where t, $s \in \mathbb{Z}[\sqrt{\rho}]$ and this representation gives us the factorization of N. Hence, the difference $|v_{\rho}(p) - v_{\rho}(q)|$ should be quite large.

R e m a r k 4. The generalized RSA-cryptosystem provides more security than the classical variant of RSA-cryptosystem, since the number of elements which are chosen to represent the message m is about square of those used in the classical variant. This advantage enables to use shorter keys than in the classical version of RSA-cryptosystem. Note that all our results cover the case of the classical RSAcryptosystem: it's enough to take the ring \mathbb{Z} instead of $\mathbb{Z}[\sqrt{\rho}]$, and to define the norm of $a \in \mathbb{Z}$ as the absolute value |a|.

Estimate of computational efficiency of the generalized RSA-cryptosystem in imaginary quadratic **domains.** Let $\mathbb{Z}[\sqrt{\rho}]$ – imaginary quadratic domain. We say that an element $x = x_1 + x_2 \sqrt{\rho} \in \mathbb{Z}[\sqrt{\rho}]$ is *n*-bit if integers x_1 and x_2 have less than n+1 bits in the binary value. Let $p = p_1 + p_2 \sqrt{\rho}$, $q = q_1 + q_2 \sqrt{\rho}$ be distinct prime *n*-bit elements of the domain $\mathbb{Z}[\sqrt{\rho}]$. Let's call RSA-cryptosystem with parameters p and *q n*-bit. Multiplication modulo N = pq of two *n*-bit elements of the domain $\mathbb{Z}[\sqrt{\rho}]$ has the complexity $O(n^2)$ and involution of *n*-bit element $x \in \mathbb{Z}[\sqrt{\rho}]$ in the domain $\mathbb{Z}[\sqrt{\rho}]$ has the complexity $O(n^2 \log k)$. So encryption and decryption using the generalized RSA-cryptosystem in the domain $\mathbb{Z}[\sqrt{\rho}]$ have the complexity $O(n^2 \log n)$. The complexity of generating the pair of keys d, e is defined by the complexity of calculating of inverse element in the domain $\mathbb{Z}[\sqrt{\rho}]$. So it has the complexity $O(n^2)$. Note that the complexity of encrypting, decrypting and generation of keys d, e using n-bit RSA-cryptosystem in the domain $\mathbb{Z}[\sqrt{\rho}]$ can be estimated as O(M), where M – the number of binary operations to encrypt, decrypt and generation of keys in classical n-bit RSA-cryptosystem. Breaking of classical n-bit cryptosystem using checking of every possible message <u>has</u> the complexity $O(4^n n^2 \log n)$, analogical breaking for *n*-bit RSA-cryptosystem in the domain $\mathbb{Z}[\sqrt{\rho}]$ has the complexity $O(16^n n^2 \log n)$. And also the number of binary operations to factorize RSA-modulus in the domain $\mathbb{Z}[\sqrt{\rho}]$, is not less than the number of binary operations to factorize RSA-modulus in classical RSA-cryptosystem.

E x a m p l e. Let the subscriber A wishes to send the secret message m = 1 + i with the signature P = 2i to the subscriber B with the help of the generalized RSA-cryptosystem in $\mathbb{Z}[\sqrt{\rho}]$ with $\rho = -1$. Let $(N_A, e_A, d_A) = (589, 7, 98743)$ and $(N_B, e_B, d_B) = (559, 13, 167173)$, $g_{N_B, N_A}(X) = x_1 + ix_2 + N_A \mathbb{Z}[i]$, $X \in \mathbb{Z}_{N_B}[i]$, where x_1, x_2 are the smallest nonnegative integers such that $X = x_1 + ix_2 + N_B \mathbb{Z}[i]$. The subscriber *A* computes

$$m_1 = m^{e_B} \pmod{N_B} = 495 + 495i$$

and

$$P_1 = (P^{e_B} \pmod{N_B})^{d_A} \pmod{N_A} = 192i.$$

So, the encrypted signed message is $(m_1, P_1) = (495 + 495i, 192i)$. The subscriber *B* gets the pair (m_1, P_1) and calculates

$$m_2 = m_1^{d_B} \pmod{N_B} = 1 + i$$

and

$$P_2 = (P_1^{e_A} \pmod{N_A})^{d_B} \pmod{N_B} = 2i.$$

So the pair (m_2, P_2) is the decrypted message.

References

1. *Rivest, R. L.* A method for obtaining digital signatures and public-key cryptosystems / R. L. Rivest, A. Shamir, L. Adleman // Communications of the ACM. – 1978. – Vol. 21. – P. 120–126.

2. *Elkamchouchi, H.* Extended RSA Cryptosystem and digital signature schemes in the domain of Gaussian integers / H. Elkamchouchi, K. Elshenawy, H. Shaban // Proceedings of the 8th International conference on communication systems. – 2002. – P. 91–95.

3. Li, B. Generalizations of RSA public key cryptosystem / B. Li // IACR. - Cryptology ePrint Arc. 2005.

4. Modified RSA in the domains of Gaussian integers and polynomials over finite fields / A. N. El-Kassar [et al.] // Proceedings of the ISCA 18th International conference on computer applications in industry and engineering. – Hawaii, USA, 2005. – P. 298–303.

5. Koval, A. Analysis of RSA over Gaussian integers algorithm // 5th international conference on information technology: new generations (ITNG 2008) / A. Koval, B. Verkhovsky. – Las Vegas, Nevada, USA, 2008. – P. 101–105.

6. Proceedings of the second international conference of soft computing for problem solving / B. V. Babu [et al.] // Advances in intelligent systems and computing. – 2014. – Vol. 236.

7. Rodossky, K. A. Euclidean algorithm / K. A. Rodossky. - Moscow: Nauka, 1988.

8. Introduction to number theoretical methods in cryptography / M. M. Gluhov [et al.]. - Saint-Petersburg: Lan', 2011.

9. Koblitz, N. Course in number theory and cryptography / N. Koblitz. - Moscow: TVP, 2001.

10. Eggleton, R. B. Euclidean quadratic fields / R. B. Eggleton, C. B. Lacampagne, J. L. Selfridge // Amer. Math. Monthly. – 1992. – Vol. 99, N 9. – P. 829–837.

11. Cryptology / Y. S. Kharin [et al.]. - Minsk: BSU, 2013.

Received 24.06.2015