2014

январь-февраль

Том 58 № 1

УДК 544.72;546.824-31;546.776

Н. Е. БОБОРИКО¹, И. А. БОБРИКОВ², Д. И. МЫЧКО¹, Г. Ф. КАРКОЦКИЙ³

СИНТЕЗ И СТРУКТУРА ГАЗОЧУВСТВИТЕЛЬНЫХ КОМПОЗИТНЫХ МАТЕРИАЛОВ ТІО₂–МоО₃

(Представлено академиком А. И. Лесниковичем)

¹Белорусский государственный университет, Минск

²Лаборатория нейтронной физики им. И. М. Франка,

Объединенный институт ядерных исследований, Дубна, Россия ³Инновационное ООО «Инноватсенсор», Минск

Поступило 30.12.2013

Введение. Сложнооксидные композиты состава TiO_2-MoO_3 находят применение как катализаторы дегидрирования алканов, аммоксидирования аренов, окисления спиртов, а также как газочувствительные слои химических газовых сенсоров [1; 2]. Специфические каталитические свойства нанесенных молибденовых катализаторов могут быть связаны как с координационным окружением иона молибдена, так и с природой оксидной подложки, которая сильно влияет на структуру MoO_3 [3]. В ранее проведенных нами исследованиях установлено [4], что полученные золь-гель методом сложнооксидные системы TiO_2-MoO_3 являются перспективными материалами для изготовления сенсоров селективного обнаружения водорода.

Материалы и методы исследования. Использование золь-гель синтеза позволяет получить материалы с развитой поверхностью и высокой степенью гомогенности на молекулярном уровне, с контролируемым фазовым составом и модифицированными структурными характеристиками. Золь-гель синтез композитных материалов TiO_2 –MoO₃ (содержание триоксида молибдена 1; 5 и 10 мол. %) включал две основные стадии. На первой стадии был получен исходный золь $TiO_2 \cdot nH_2O$ осаждением аммиаком из раствора тетрахлорида титана в соляной кислоте. На второй стадии в исходный золь гидратированного диоксида титана вводилось расчетное количество гидрата парамолибдата аммония $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$. При прогреве коллоидных систем происходит разложение гидрата диоксида титана до TiO_2 и термодеструкция парамолибдата аммония с образованием MoO_3 . Золь гидрата оксида молибдена был получен титрованием водного раствора парамолибдата аммония азотной кислотой с последующей промывкой при центрифугировании.

В данной работе с использованием нейтроно- и рентгенографии детально изучены структурно-фазовые характеристики синтезированных золь-гель методом сложнооксидных систем TiO₂– MoO₃ с различным количественным соотношением компонентов, прогретых при различной температуре, а также установлены структурно-фазовые особенности полученных композитов, ответственные за их газочувствительные свойства.

По результатам проведенного ранее методом рентгенографии исследования фазового состава композитных материалов с различным содержанием MoO₃ и прогретых при различной температуре [5] при введении триоксида молибдена в диоксид титана наблюдается смещение температуры фазового перехода анатаз–рутил в область больших температур по сравнению с индивидуальным диоксидом титана и подавление кристаллизации фазы диоксида титана при увеличении содержания MoO₃ в композите. Фазовый состав композитных материалов, установленный методом рентгенографии, представлен в табл. 1.

Для уточнения фазового состава композитных материалов и определения их прецизионной поликристаллической структуры использовался метод нейтронной дифракции высокого разре-

Состав образца	Температура прогрева, °С	Фазовый состав композитного материала	
TiO ₂	450	Анатаз	
_	600	Анатаз, рутил	
	850	Рутил	
MoO ₃	450	α -MoO ₃	
	600	α-MoO ₃	
	850	α-MoO ₃	
ТіО ₂ -МоО ₃ (1 мол. % МоО ₃)	450	Анатаз	
	600	Анатаз	
	850	Рутил	
ТіО ₂ -МоО ₃ (10 мол. % МоО ₃)	450	Анатаз, α-МоО ₃	
	600	Анатаз, α-MoO ₃	
	850	Рутил	

Таблица 1. Фазовый состав индивидуальных оксидов титана и молибдена и композитных материалов TiO₂-MoO₃, установленный методом рентгенографии

шения. Особый характер взаимодействия нейтронов с ядрами атомов приводит к тому, что амплитуда рассеяния нейтронов для атомов различных элементов произвольным образом зависит от порядкового номера Z элемента в периодической системе, в отличие от амплитуды рассеяния рентгеновских лучей, которая возрастает с увеличением порядкового номера атома. Рассеивающие способности легких и тяжелых элементов оказываются одного порядка, что позволяет прецизионно определять поликристаллическую структуру образцов, содержащих в своем составе как тяжелые, так и легкие элементы.

Данные особенности метода нейтронной дифракции, а также высокая разрешающая способность прибора, на котором выполнялись нейтронные дифракционные эксперименты (фурье-дифрактометр высокого разрешения (ФДВР/HRFD), расположенный на импульсном реакторе ИБР-2, в лаборатории нейтронной физики им. Франка Объединенного института ядерных исследований, г. Дубна) [6], позволили уточнить фазовый состав сложнооксидных образцов и определить их поликристаллическую структуру. Разрешение дифрактометра составляет $\Delta d / d \approx 0,001$, где d – межплоскостное расстояние. Обработка полученных данных проводилась с помощью программы FullProf [7].

Результаты и их обсуждение. Результаты нейтронографического исследования позволили выявить присутствие фазы кристаллического α -MoO₃ в композитных образцах с малым содержанием триоксида молибдена (1 мол. %), а также после прогрева образцов во всем диапазоне концентраций MoO₃ при высоких температурах (850 °C). Наличие фазы α -MoO₃ в данных образцах методом рентгенографии не фиксировалось.

Как известно, индивидуальный триоксид молибдена характеризуется орторомбической сингонией, пространственная группа P bnm [8]. Структурной единицей оксида молибдена является искаженный октаэдр с атомом молибдена в центре и шестью атомами кислорода, характеризующимися пятью различными длинами связей Мо–О. Схематическая структура данного октаэдра с указанием справочных значений длин связей при комнатной температуре [8] изображена на рис. 1, *а*.

Рис. 1. Октаэдр MoO_6 с указанием справочных значений длин связей Mo–O при комнатной температуре (*a*) и направления искажений в октаэдрах MoO_6 при прогреве от 450 до 600 °C в композите TiO_2 – MoO_3 (1 мол. %) (*б*) и в композите TiO_2 – MoO_3 (1 мол. %) (*б*) и в композите TiO_2 – MoO_3 (10 мол. %) (*в*)

Установлено, что увеличение температуры прогрева оксида молибдена с 450 до 850 °С приводит к разрыхлению кристаллической решетки оксида, причем наблюдается монотонное увеличение параметров a и c, а для параметра b наблюдается снижение значения после прогрева при 600 °С с последующим увеличением после прогрева при 850 °С. Изменение параметров кристаллической решетки оксида молибдена представлено в табл. 2.

Образец	Температура прогрева, °С	Кристаллическая фаза	Параметры решетки кристаллической фазы			
			<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	$V_{\rm gu}, {\rm \AA}^3$
MoO ₃	450		3,9602	13,8537	3,6955	202,75
MoO ₃	600	α-MoO ₃	3,9607	13,8515	3,6956	202,75
MoO ₃	850		3,9626	13,8574	3,6976	203,04
TiO ₂	450	Анатаз	3,7898	3,7898	9,4869	136,25
TiO ₂	850	Рутил	4,5919	4,5919	2,9589	62,38
ТіО ₂ –МоО ₃ 1 мол.%	450	Анатаз	3,7896	3,7896	9,4448	135,64
		α -MoO ₃	3,9813	13,9363	3,6887	204,66
ТіО ₂ -МоО ₃ 1 мол.%	1 мол.% 850	Рутил	4,5948	4,5948	2,9593	62,48
		α -MoO ₃	3,9745	13,8481	3,6834	202,73
ТіО ₂ -МоО ₃ 10 мол.%	450	Анатаз	3,7853	3,7853	9,3546	134,04
		α -MoO ₃	3,9595	13,8220	3,6945	202,19
ТіО ₂ -МоО ₃ 10 мол.%	850	Рутил	4,5940	4,5940	2,9588	62,45
		α-MoO ₃	3,9619	13,8602	3,6966	202,99

Таблица 2. Изменение параметров кристаллической решетки диоксида титана и оксида молибдена

По данным нейтронографии, при прогреве индивидуального оксида молибдена наблюдается изменение длин связей в октаэдре MoO_6 . Установлено, что длина связей Mo-O(2), Mo-O(3), Mo-O(4) монотонно увеличивается с повышением температуры прогрева, тогда как длина связи Mo-O(1) и Mo-O(5) снижается после прогрева при 600 °C и увеличивается после прогрева при 850 °C. Сумма длин связей Mo-O(2) и Mo-O(4) представляет собой параметр *a* кристаллической решетки оксида молибдена. Таким образом, при увеличении температуры прогрева фиксируется появление тетрагональных искажений октаэдров MoO_6 по различным направлениям (рис. 1 и 2). После прогрева при 600 °C наблюдается сжатие основания октаэдра вдоль диагонали O(1)-Mo-O(5) и расширение вдоль диагонали O(2)-Mo-O(4). После прогрева при большей температуре (850 °C) фиксируется увеличение длин связей в экваториальном направлении. Кроме того, при прогреве наблюдается монотонное увеличение связей в аксиальном направлении, в предельном случае такой тип искажения должен привести к образованию слоистой структуры.

Для сложнооксидной системы TiO_2 – MoO_3 с содержанием оксида молибдена 1 мол. % тенденция изменения длин связей Mo–O при увеличении температуры прогрева от 450 до 600 °C остается сходной с индивидуальным оксидом молибдена. Дальнейший прогрев до 850 °C приводит к сжатию октаэдра в аксиальном направлении и вдоль диагонали O(2)–Mo–O(4), и к растяжению вдоль диагонали O(1)–Mo–O(5).

Для композитного материала TiO₂-MoO₃ с содержанием оксида молибдена 10 мол. % характер изменения длин связей Мо-О меняется – наблюдается увеличение всех длин связей Мо-О

Рис. 2. Направления искажений в октаэдре MoO₆ при прогреве от 600 до 850 °C в индивидуальном MoO₃ (*a*), композите TiO₂–MoO₃ (10 мол. %) (*б*) и в композите TiO₂–MoO₃ (1 мол. %) (*в*)

после прогрева при 600 °С и их незначительное уменьшение после прогрева при 850 °С. Лишь для связей Мо–O(3) наблюдается дальнейшее незначительное увеличение длины после прогрева при 850 °С, т. е. наблюдается небольшое растяжение октаэдра MoO₆ в аксиальном направлении (рис. 2, δ , ϵ). Величина изменения связей при прогреве 600–850 °С мала, т. е. можно говорить об устойчивости октаэдра MoO₆ в данном температурном интервале. Сохранение характера изменений длин связи Мо–O в композите с содержанием MoO₃ 10 мол. % сходным с изменениями в индивидуальном триоксиде молибдена и резкое различие характера изменений в композите с 1 мол. % MoO₃ указывают на наличие взаимодействий в системе TiO₂–MoO₃ с 1 мол. % триоксида молибдена, состоящих в нарушении структуры как MoO₃, так и TiO₂ при формировании композита, причем взаимодействия тем более выражены, чем выше температура прогрева.

Наличие тетрагональных искажений в структурных элементах композитных материалов TiO₂-MoO₃ по различным направлениям (рис. 1 и 2) указывает на высокую подвижность кислорода решетки триоксида молибдена, что позволяет ему активно участвовать в процессах окисления адсорбированных молекул, т. е. улучшает каталитические свойства системы. Кроме того, величина изменения длины связей Мо-О в сложнооксидных образцах на порядок больше, чем для индивидуального MoO₃.

Как показывает анализ полученных результатов, для индивидуального MoO₃ характерно наличие микронапряжений, изменяющихся при прогреве. После температурной обработки при 450 °C триоксид молибдена характеризуется наличием микронапряжений по направлениям [220] и [202]. Микронапряжения по направлению [202] практически исчезают после прогрева при 600 °C, а после прогрева при 850 °C – как по направлению [202], так и по направлению [220].

Диоксид титана в фазе анатаза относится к тетрагональной сингонии, пространственная группа I 41/amd [8]. По данным нейтронографии, объем ячейки анатаза снижается с увеличением содержания модифицирующей добавки триоксида молибдена (табл. 2).

Как показывают результаты фазового анализа, введение модифицирующей добавки триоксида молибдена смещает температуру фазового перехода анатаз–рутил в область больших значений. Для образцов, прогретых при 850 °С, с различным содержанием MoO_3 характерно расширение решетки диоксида титана в фазе рутила. Таким образом, введение MoO_3 в диоксид титана при низких температурах прогрева (450 °С, диоксид титана кристаллизуется в фазе анатаза) приводит к сжатию решетки TiO_2 , при высоких температурах (850 °С, фаза анатаза переходит в фазу рутила) – к ее расширению. Данный факт можно объяснить влиянием легирующей добавки MoO_3 на кристаллизацию диоксида титана в процессе прогрева, причем указанное влияние тем более эффективно, чем ниже концентрация легирующего оксида. Некоторая часть оксида молибдена остается в индивидуальном виде, что фиксируется при фазовом анализе.

Основываясь на результатах, полученных методом нейтронографии, определены размеры кристаллитов фаз диоксида титана и оксида молибдена в композитных материалах. Для определения среднего размера частиц строилась зависимость полуширины пика от межплоскостного расстояния [9]

$$W^2 = c_1 + (c_2 + c_3)d^2 + c_4d^4,$$

где W – ширина пика на полувысоте; c_1 и c_2 – коэффициенты, которые определяются функцией разрешения дифрактометра; c_3 – коэффициент, пропорциональный ε^2 , где ε – микродеформация; d – межплоскостное расстояние.

Коэффициент при d^4 связан с размером частиц

$$c_4 \approx K / L^2$$
,

где *L* – размер кристаллитов; *K* – коэффициент анизотропии, определяющийся формой частиц, для сферических частиц *K* = 0,75.

Как видно из представленных в табл. 3 результатов расчета размера частиц, в композитных материалах данный параметр для обеих фаз значительно меньше, чем в индивидуальных оксидах, прогретых при той же температуре. Наибольшее влияние на изменение размера частиц диоксида титана оказывает введение 1 мол. % оксида молибдена – по сравнению с индивидуальным TiO₂ величина снижается в 2 раза. При этом наблюдается кристаллизация наноразмерного высокодисперсного MoO₃ с размером частиц до 10 нм.

Состав образца	Размер частиц кристаллической фазы, нм			
	Рутил	α-MoO ₃		
TiO ₂	185	_		
MoO ₃	—	147		
ТіО ₂ –МоО ₃ 1 мол. %	89	10		
TiO ₂ -MoO ₃ 10 мол. %	134	75		

Таблица 3. Размер частиц в материалах, прогретых при 850 °С

Исходя из результатов фазового анализа, варьирование количества оксида молибдена в сложнооксидном материале, а также прогрев композитов при различных температурах приводит к формированию кристаллических фаз и возникновению особенностей поликристаллической структуры, которые должны оказывать влияние на газочувствительные свойства материала. На основе синтезированных сложнооксидных материалов были изготовлены чувствительные элементы химических газовых сенсоров. Технология их изготовления и измерения газочувствительных характеристик сенсоров описаны в [4]. Изготовленные сенсоры с нанесенными и высушенными золями подвергались температурной обработке при 600 °С или при 850 °С для формирования различных кристаллических фаз в газочувствительном материале. Выходной сигнал сенсора рассчитывался как разность напряжения на сенсоре на воздухе и в водородо-воздушной смеси (поверенная газовоздушная смесь с содержанием водорода 1,0 об. %).

Как видно на рис. 3, легирование диоксида титана триоксидом молибдена приводит к значительному повышению выходного сигнала сенсора в среде H₂-воздух независимо от температуры отжига чувствительных элементов, причем значение выходного сигнала сенсора снижается при увеличении мольного отношения триоксид молибдена : диоксид титана. Снижение концентрации MoO₃ в композите ниже 1 мол. % не приводит к повышению выходного сигнала сенсора.

При сравнении данных, представленных на рис. 3, *a* и 3, *б*, очевидно, что при снижении температуры отжига чувствительных элементов до 600 °C выходной сигнал сенсоров остается на том же уровне для сенсоров на основе системы TiO_2 –MoO₃ (10 мол. %) и снижается (на 10– 30 мВ) для сенсоров на основе системы TiO_2 –MoO₃ (1 мол. %).

Значительное увеличение выходного сигнала сенсоров на основе композитных материалов TiO₂–MoO₃ в сравнении с сенсорами на основе индивидуального диоксида титана указывает на определяющую роль наличия фазы оксида молибдена при детектировании водорода.

Сохранение выходного сигнала сенсоров на основе системы TiO₂-MoO₃ (10 мол. %), прогретых при 600 и 850 °C, на одном уровне объясняется устойчивостью структуры MoO₆ в данном

Рис. 3. Зависимость выходного сигнала от рабочего тока сенсоров на основе систем TiO₂-MoO₃ в водородо-воздушной среде (1,0 об. % H₂): *I* – TiO₂, *Z* – TiO₂-MoO₃ (1 мол. %), *З* – TiO₂-MoO₃ (10 мол. %); температура прогрева чувствительных элементов 600 °C (*a*) и 850 °C (*b*)

композите при прогреве, тогда как в октаэдрах MoO₆ в композите TiO₂–MoO₃ (1 мол. %) в температурном интервале 600–850 °C фиксируется наличие различных типов искажений, что увеличивает активность кислорода решетки MoO₃ в процессах каталитического окисления и приводит к повышению выходного сигнала.

Заключение. Полученные результаты позволяют предположить механизм детектирования водорода газочувствительными материалами на основе композитов TiO₂–MoO₃. Адсорбция молекул водорода наиболее вероятна на наноразмерные частицы MoO₃, содержащие координационно ненасыщенные ионы молибдена, наличие которых установлено в ранее проведенных исследованиях [10]. Окисление адсорбированных молекул происходит при участии как поверхностных и мостиковых групп Ti–OH, так и кислорода решетки MoO₃. Высокая активность кислорода решетки оксида молибдена подтверждается его высокой подвижностью, установленной методом рентгено- и нейтронографии, а также способностью к изменению координационного окружения атома молибдена, установленной ранее [11].

Значительное увеличение выходного сигнала сенсоров, изготовленных на основе композитного материала с наименьшим содержанием MoO_3 , обусловлено кристаллизацией высокодисперсного наноразмерного триоксида молибдена, обладающего высокой каталитической активностью. Размер частиц MoO_3 в композитных материалах с большим содержанием MoO_3 , а также в индивидуальном оксиде молибдена, прогретых в тех же условиях, превышает размер частиц MoO_3 в композите с 1 мол. % MoO_3 в 10–20 раз. Таким образом, при увеличении содержания MoO_3 в сложнооксидном материале наблюдается увеличение размера частиц кристаллических фаз TiO_2 и MoO_3 , что снижает каталитическую активность композита.

Литература

1. Komandur V. R. C., Kondakindi R. R., Chinthala P. K. // Catal. Commun. 2001. Vol. 2. P. 277-284.

2. Galatsis K. et al. // Sens. Actuators B. 2001. Vol. 77. P. 472–477.

3. Zhao-Bin W., Cheng-Dong W., Qin X. // Acta Physico-Chimica Sinica. 1994. Vol. 10. P. 402–408.

4. Мычко Д. И., Боборико Н. Е., Каркоцкий Г. Ф., Дашко Н. С. // Свиридовские чтения. 2012. Вып. 8. С. 109–115.

5. Боборико Н. Е., Мычко Д. И. // Неорг. мат. 2013. Т. 49, № 8. С. 853-859.

6. Aksenov V. L. et al. // J. Neutron Res. 1997. Vol. 5. P. 181-200.

7. Rodriguez-Carvajal J. // Physica B. 1993. Vol. 192. P. 55-62.

8. Кристаллографическая и кристаллохимическая База данных для минералов и их структурных аналогов [Электронный ресурс]. – Режим доступа: http://database.iem.ac.ru/mincryst/rus/.

9. Bruno G. et al. // J. Eur. Ceram. Soc. 2010. Vol. 30. P. 2555–2562.

10. Боборико Н. Е., Лапчук Н. М., Азарко И. И., Мычко Д. И. // Журн. прикладной спектроскопии. 2013. Т. 80, № 2. С. 211–215.

11. Boboriko N. E., Mychko D. I. // Vib. Spectrosc. 2014. Vol. 70. P. 36-41.

N. E. BOBORIKO, I. A. BOBRIKOV, D. I. MYCHKO, G. F. KARKOTSKY

boboriko@bsu.by

SYNTHESIS AND THE STRUCTURE OF TiO2:M0O3 GAS SENSING COMPOSITE MATERIALS

Summary

Introduction of molybdenum trioxide to gas sensing materials based on titanium dioxide results in a considerable increase of the output signal in the hydrogen-air environment. It is established that the value of the output signal reaches the maximum at the 1 mol. % MoO₃ content in the composite material. Improved gas sensing characteristics of TiO_2 :MoO₃ composite correlate with the structural and phase peculiarities of this system – the inhibition of TiO_2 crystallization in the TiO_2 :MoO₃ system, the shift of anatase-rutile phase transition to the higher temperature area in comparison with the temperature of this transition in unloaded TiO_2 , and with the presence of different types of tetrahonal distortions in MoO₆ octahedrons, which ensures the MoO₃ lattice high activity in the processes of hydrogen catalytic oxidation, and also with the crystallization of highly dispersed molybdenum oxide with a particle size of 10 nm.