2014 июль–август Том 58 № 4

УДК 612.11+577.152

Д. В. ГРИГОРЬЕВА 1 , И. В. ГОРУДКО 1 , А. В. СОКОЛОВ 2 , Е. В. ШАМОВА 1 , В. Б. ВАСИЛЬЕВ 3 , О. М. ПАНАСЕНКО 4 , академик С. Н. ЧЕРЕНКЕВИЧ 1

РЕГУЛЯЦИЯ МИЕЛОПЕРОКСИДАЗОЙ CA²⁺-СИГНАЛИЗАЦИИ В НЕЙТРОФИЛАХ

 1 Белорусский государственный университет, Минск

Поступило 21.04.2014

Введение. Нейтрофильные лейкоциты играют важную роль в защите организма от инфекций, вызванных бактериями, грибами, вирусами, а также от трансформированных или поврежденных клеток организма-хозяина. При избытке в очаге воспаления или крови факторов активации нейтрофилов запускается процесс неконтролируемого высвобождения в окружающую среду активных форм кислорода, в том числе токсических кислородных радикалов, а также содержащихся в гранулах гидролитических ферментов [1].

Миелопероксидаза (МПО) представляет собой гемсодержащий фермент азурофильных гранул нейтрофилов. Используя в качестве субстрата H_2O_2 , продуцируемый *in vivo* при респираторном взрыве, высвобождаемая из активированных нейтрофилов МПО может проявлять как галогенирующую (окисление галогенидов до высокореакционных гипогалоидных кислот), так и пероксидазную (одноэлектронное окисление ряда веществ) активность. Генерируемые МПО окислители (HOCl, HOBr, хлорамины, свободные радикалы и др.) являются высокореакционными соединениями, которым и принадлежит основная антимикробная функция нейтрофилов [2]. Однако при секреторной дегрануляции или гибели нейтрофила может проявляться патологическое действие фермента. Так, было показано [3], что гипогалоидные кислоты могут изменять структурные свойства эритроцитов и инициировать гемолиз этих клеток. Кроме того, известно, что модифицированные в результате действия НОСІ липиды [4], белки [5], липопротеины [6] способны выступать в качестве новых классов веществ, модулирующих функциональные свойства клеток миелоидного происхождения. В настоящее время накапливаются экспериментальные данные, указывающие на то, что МПО участвует в регуляции структурно-функциональных свойств клеток крови, не только проявляя свою ферментативную активность, но также непосредственно связываясь с клеточной поверхностью. Так, ранее нами было выявлено уменьшение устойчивости эритроцитов к кислотному и осмотическому гемолизу в присутствии МПО, обусловленное электростатическим взаимодействием фермента с плазматической мембраной клеток [7]. Установлено, что связывание МПО с тромбоцитами сопровождается деполимеризацией примембранного F-актина, увеличением концентрации внутриклеточного Ca²⁺ в результате его депо-зависимого входа в цитозоль тромбоцитов, а также снижением модуля упругости тромбоцитов [8]. Lau с соавт. [9] показали, что МПО может выступать в качестве аутокринного модулятора функциональной активности нейтрофилов. При связывании с интегрином CD11b/CD18 на внешней поверхности нейтрофилов и активации внутриклеточных сигнальных путей МПО стимулирует дегрануляцию и окислительный взрыв нейтрофилов.

Кальций является вторичным мессенджером, играющим ключевую роль во многих процессах трансдукции сигнала в клетке, которые регулируют разнообразные функции, такие как секреция, клеточное движение, пролиферация и клеточная смерть [10]. При активации клеток происходит увеличение концентрации кальция в цитозоле за счет высвобождения Ca^{2+} из внутри-

²НИИ экспериментальной медицины СЗО РАМН, Санкт-Петербург

³Санкт-Петербургский государственный университет

 $^{^4}$ НИИ физико-химической медицины ФМБА России, Москва

клеточных кальциевых депо и входа Ca²⁺ из внеклеточной среды через каналы плазматической мембраны [10]. Стимуляция нейтрофилов различными агонистами может сопровождаться увеличением концентрации свободного кальция в цитозоле и, в конечном итоге, приводить к изменению функциональной активности нейтрофилов. Изменяется ли кальциевый ответ нейтрофилов при их связывании с МПО в настоящее время неизвестно. В данной работе мы показали, что МПО индуцирует увеличение концентрации кальция в цитозоле нейтрофилов и исследовали механизмы полученного эффекта.

Материалы и методы исследования. В работе использовали следующие реактивы: HEPES, ЭДТА, N-формил-метионил-лейцил-фенилаланин (fMLP), N-этилмалеимид (NEM), генестеин, вортманнин, NaBr, NaOCl (Sigma-Aldrich, США); фура-2AM (Molecular probes, США); гистопак (Nycomed, Норвегия); декстран T70 (Roth, Германия). Очищенные моноклональные антитела (mAb) к CD18 – β -субъединице β_2 -интегрина (анти-CD18 mAb) и CD 11b – α -субъединице β_2 -интегрина (анти-CD11b mAb) были приобретены у фирмы Весtоп Dickinson, Сан-Хосе, Калифорния. Остальные реактивы – Реахим, Россия; Белмедпрепараты, Беларусь.

Донорскую кровь, стабилизированную 3,8 %-ным раствором цитрата натрия в соотношении 9: 1, получали из Республиканского научно-практического центра гематологии и трансфузиологии. Нейтрофилы выделяли согласно методу, описанному в работе [11] с использованием декстрана Т70 и гистопака. Отмытые нейтрофилы ресуспендировали в фосфатно-солевом буфере (10 мМ Na_2HPO_4/KH_2PO_4 , 137 мМ NaCl, 2,7 мМ KCl, pH 7,4) с глюкозой (11 мМ) и хранили при 4 °C в течение нескольких часов. Содержание нейтрофилов в клеточной суспензии составляло 97–98 %, число жизнеспособных клеток (по тесту с трипановым синим) – не менее 96 %.

Препарат МПО с показателем чистоты A_{430}/A_{280} (RZ) ~ 0.85 выделяли из замороженных лей-коцитов здоровых доноров с помощью аффинной хроматографии на гепарин-сефарозе, гидрофобной хроматографии на фенил-сефарозе и гель-фильтрации на сефакриле S-200 HR [12].

Концентрацию внутриклеточных свободных ионов кальция $[\mathrm{Ca^{2+}}]_i$ в нейтрофилах определяли с применением флуоресцентного зонда фура-2AM. К 1 мл отмытых нейтрофилов добавляли 2 мкл 0,5 мМ фура-2AM и инкубировали в течение 40 мин при 37 °C и постоянном перемешивании. Нагруженные клетки отмывали от инкубационной среды дважды HEPES-буфером (20 мМ HEPES, 120 мМ NaCl, 11 мМ D-глюкоза, 5 мМ КСl, 1 мМ КН $_2$ PO $_4$, рН 7,4) при 1500 об/мин в течение 5 мин. Отмытые нейтрофилы сохраняли в качестве исходной суспензии в концентрации 10^7 кл/мл. Для измерения $[\mathrm{Ca^{2+}}]_i$ в кювету спектрофлуориметра вносили 0,9 мл HEPES-буфера, содержащего 4 мМ MgSO $_4$, 2 мМ CaCl $_2$ и 100 мкл исходной суспензии клеток. Измерение флуоресценции проводили на длине волны 510 нм (возбуждение — 340 и 380 нм) при 37 °C в кинетическом режиме с использованием спектрофлуориметра LSF 1211A (СОЛАР, Минск, Беларусь). Концентрацию цитоплазматического кальция рассчитывали по классическому методу [13].

Результаты исследований представлены как среднее значение \pm среднеквадратичное отклонение. Достоверность различий средних величин рассчитывали с использованием t-критерия Стьюдента, принимая различия достоверными на уровне значимости p < 0.05.

Результаты и их обсуждение. Как показано на рис. 1, a (кривая I), добавление МПО к суспензии нейтрофилов, находящихся в Ca^{2+} -содержащей среде, приводило к увеличению $[Ca^{2+}]_i$ в цитозоле, которое может происходить как за счет высвобождения Ca^{2+} из внутриклеточных депо, так и за счет входа внеклеточного Ca^{2+} через каналы плазматической мембраны. Из данных, представленных на рис. 1, δ , видно, что МПО, добавленная к суспензии нейтрофилов в Ca^{2+} -содержащей среде, инициировала дозозависимое увеличение $[Ca^{2+}]_i$, причем максимальный эффект наблюдался при добавлении 75–150 нМ. В каждой серии экспериментов величину эффекта, оказываемого МПО на нейтрофилы, сравнивали с ответом клеток на стандартный активатор – fMLP. Так, увеличение $[Ca^{2+}]_i$ в ответ на 1 мкМ fMLP составляло 900 ± 35 нМ, в то время как увеличение $[Ca^{2+}]_i$ в ответ на 100 нМ МПО было 200 ± 21 нМ по сравнению с базальным уровнем $[Ca^{2+}]_i$ в клетке $(25 \pm 9$ нМ). Также было показано, что МПО, модифицированная HOCl/HOBr в мольном соотношении 1 : 100, сохраняла свою способность вызывать Ca^{2+} -ответ в нейтрофилах. Так, увеличение $[Ca^{2+}]_i$ в нейтрофилах при действии хлорированной и бромированной МПО (100 нM) составляло 193 ± 21 и 200 ± 20 нМ соответственно. В присутствии 50 мкМ гидразида

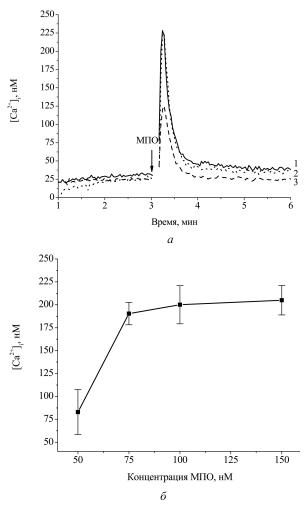


Рис. 1. Влияние МПО на Ca^{2+} -ответ нейтрофилов: a – типичные кинетические кривые МПО-индуцированного изменения $[Ca^{2+}]_i$ в нейтрофилах в Ca^{2+} -содержащей среде в отсутствие (кривая I) и в присутствии (кривая 2) 50 мкМ гидразида 4-аминобензойной кислоты; кривая 3 – изменение $[Ca^{2+}]_i$ в нейтрофилах в бескальциевой среде, содержащей 1 мМ ЭДТА, в ответ на МПО. Стрелкой указан момент добавления 100 нМ МПО; δ – зависимость изменения $[Ca^{2+}]_i$ в нейтрофилах в Ca^{2+} -содержащей среде от концентрации МПО

4-аминобензойной кислоты (ингибитора ферментативной активности МПО) кальциевый ответ нейтрофилов на МПО сохранялся (рис. 1, a, кривая 2). Эти данные свидетельствуют о том, что увеличение $[\mathrm{Ca}^{2+}]_i$ в цитозоле нейтрофилов в присутствии МПО не связано с ее каталитической активностью, а обусловлено непосредственным взаимодействием фермента с компонентами плазматической мембраны.

Для оценки роли входа внеклеточного Ca^{2+} через плазматическую мембрану при МПО-индуцированном увеличении $[\operatorname{Ca}^{2+}]_i$ в нейтрофилах эксперименты были проведены в бескальциевой среде, содержащей 1 мМ ЭДТА. На рис. 1, a (кривая a) видно, что при добавлении МПО к суспензии нейтрофилов, находящихся в бескальциевой среде, $[\operatorname{Ca}^{2+}]_i$ снижалась на a0 ± 4 % (a0 = 6, a0,05) по сравнению с ответом нейтрофилов на МПО в a0 содержащей среде. Эти данные свидетельствуют о том, что увеличение $[\operatorname{Ca}^{2+}]_i$ в нейтрофилах при добавлении МПО, действительно, обусловлено не только выходом a0 внутриклеточных депо, но и входом ионов кальция из внеклеточного пространства через каналы плазматической мембраны.

Для того чтобы исследовать участие различных Ca^{2+} -каналов плазматической мембраны в регуляции МПО-индуцированного входа ионов кальция в нейтрофилы, использовали $NiCl_2$ — неорганический блокатор Ca^{2+} -каналов Т-типа и верапамил — блокатор потенциал-зависимых Ca^{2+} -каналов L-типа. Было установлено, что в присутствии $NiCl_2$ (1 мМ) МПО-индуцированное увеличение $[Ca^{2+}]_i$ уменьшалось на 77 ± 6 % (n = 5, p < 0.05) по сравнению с контролем. Также

как и в случае с ${
m NiCl}_2$, после преинкубации клеток с верапамилом (10 мкМ) эффект, оказываемый МПО на нейтрофилы, снижался на 36 ± 2 % (n=4,p<0,05) от контроля. Таким образом, полученные результаты свидетельствуют о том, что МПО-индуцированный вход ионов кальция из внеклеточной среды происходит с участием кальциевых каналов Т-типа и верапамил-чувствительных ${
m Ca}^{2+}$ -каналов L-типа плазматической мембраны.

Известно, что МПО-индуцированная активация внутриклеточной сигнализации в нейтрофилах осуществляется через β_2 -интегрины (CD11b/CD18), связывание которых с лигандами происходит с участием ионов двухвалентных металлов [9]. Снижение МПО-индуцированного роста $[\mathrm{Ca}^{2+}]_i$ в нейтрофилах, находящихся в бескальциевой среде, содержащей ЭДТА (хелатор двухвалентных катионов, необходимых, в том числе, для связывания интегринов с лигандами), может быть как в результате уменьшения связывания МПО со своим рецептором CD11b/CD18, так и ингибирования входа кальция извне. Для того чтобы оценить участие CD11b/CD18 в МПО-индуцированном Ca^{2+} -ответе нейтрофилов, исследовали влияние моноклональных антител — mAb к CD11b (α -субъединице) и CD18 (β -субъединице) β_2 -интегрина — на Ca^{2+} -ответ нейтрофилов при добавлении МПО. Установлено, что присутствие mAb к CD18 субъединице β_2 -интегрина не влияет (рис. 2, α) на МПО-индуцированный Ca^{2+} -ответ нейтрофилов. Однако в присутствии моноклональных антител к CD11b субъединице β_2 -интегрина было выявлено снижение прироста $[\mathrm{Ca}^{2+}]_i$ в ответ на МПО на $\mathrm{51} \pm 8$ % (n=7, p<0,0.5). Эти данные свидетельствуют об участии α -субъединицы β_2 -интегрина в увеличении $[\mathrm{Ca}^{2+}]_i$ в нейтрофилах при добавлении МПО.

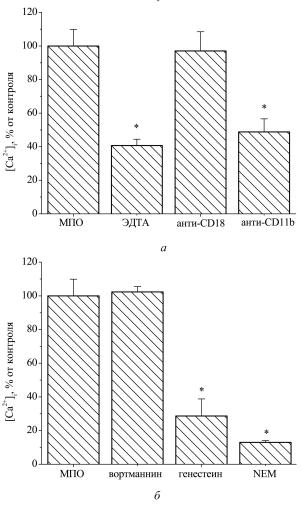


Рис. 2. Влияние моноклональных антител и ингибиторов сигнальных путей на МПО-индуцированное изменение $[\mathrm{Ca}^{2+}]_i$ в нейтрофилах: зависимость изменения $[\mathrm{Ca}^{2+}]_i$ в нейтрофилах в Ca^{2+} -содержащей среде при добавлении 100 нМ МПО в отсутствие и в присутствии моноклональных антител (10 мкг/мл) к субъединицам β_2 -интегрина нейтрофилов, ЭДТА (1 мМ) (a), а также ингибиторов внутриклеточных сигнальных систем: генестеина (10 мкМ), вортманнина (100 нМ) и NEM (10 мкМ) (δ)

Для оценки участия вклада различных сигнальных белков и ферментов в регуляцию кальциевой сигнализации в присутствии МПО использовали следующие ингибиторы: вортманнин (ингибитор фосфотидилинозитол-3-киназ), генестеин (ингибитор тирозинкиназ), NEM (известный сульфгидрильный реагент, основными мишенями которого в нейтрофилах являются цитозольный белок NSF (N-ethylmaleimide-sensitive factor), белок Rac1 и др.). Как видно из данных, представленных на рис. 2, δ , инкубация нейтрофилов с вортманнином (100 нМ) не оказывала влияния на увеличение $[{\rm Ca}^{2+}]_i$ в клетках в присутствии МПО, в то время как предварительная обработка нейтрофилов генестеином (10 мкМ) снижала ${\rm Ca}^{2+}$ -ответ нейтрофилов при добавлении МПО на 71 ± 10 % (n = 6, p < 0.05). Также нами было установлено, что проникающий через плазматическую мембрану сульфгидрильный реагент NEM (10 мкМ) значительно (на 87 ± 1 %, n = 4, p < 0.05) ингибировал МПО-индуцированное увеличение $[{\rm Ca}^{2+}]_i$ в нейтрофилах. Таким образом, полученные данные свидетельствуют об участии тирозинкиназ, а также белков и ферментов, содержащих SH-группы, в ${\rm Ca}^{2+}$ -ответе нейтрофилов после связывания МПО с интегринами.

Известно, что связывание агонистов различной природы с интегринами нейтрофилов может приводить к генерации внутриклеточных сигналов, которые активируют клеточные ответы [14]. Интегрины не содержат каталитических доменов и используют цитозольные нерецепторные тирозинкиназы, например, Srs и Syk семейств для последующей трансдукции сигнала [14]. В свою очередь, активация тирозинкиназ может активировать фосфолипазу Сү, которая гидролизует фосфоинозитиды с образованием диацилглицерола и инозитол-3-фосфата. Последний, в свою очередь, инициирует высвобождение Ca^{2+} из внутриклеточных депо [1]. Так как в данной работе было выявлено, что после преинкубации нейтрофилов с генестеином (10 мкМ) в бескальциевой среде, инициированный МПО, Ca^{2+} -ответ уменьшался на 27 ± 2 % (n = 3, p < 0.05), можно предположить участие тирозинкиназ в МПО-индуцированном увеличении $[Ca^{2+}]_i$ за счет выхода Ca^{2+} из внутриклеточных депо клеток. Имеются также данные [15], свидетельствующие об участии тирозинкиназ в увеличении $[Ca^{2+}]_i$, которое обусловлено открытием потенциал-зависимых кальциевых каналов, однако механизмы данного эффекта до конца не выяснены.

Заключение. Таким образом, МПО, секретируемая нейтрофилами в очагах воспаления, инициирует увеличение концентрации свободных ионов внутриклеточного кальция в нейтрофилах, обусловленное как выходом ионов кальция из внутриклеточных депо, так и входом внеклеточного Ca^{2+} через каналы плазматической мембраны. МПО-индуцированное увеличение $[\mathrm{Ca}^{2+}]_i$ в нейтрофилах не связано с проявлением каталитической активности фермента, а обусловлено связыванием МПО с α -субъединицей β_2 -интегрина нейтрофилов и активацией тирозинкиназ и SH-содержащих реагентов. Таким образом, кальций, являющийся основным вторичным мессенджером во внутриклеточной передаче сигналов к молекулам-мишеням, играет ключевую роль в регуляции МПО-зависимой дегрануляции и генерации активных форм кислорода нейтрофилами.

Литература

- 1. Галкин А. А., Демидова В. С. // Успехи современной биологии. 2007. Т. 127, № 1. С. 58–72.
- 2. Klebanoff S. J. // J. of leukocyte biology. 2005. Vol. 7. P. 598-625.
- 3. Zavodnik I. B. et al. // Bioelectrochemistry. 2002. Vol. 58. P. 127–135.
- 4. Горудко И. В. и др. // Биол. мембраны. 2010. Т. 27, № 4. С. 314–324.
- 5. Körmöczi G. F. et al. // J. Immunol. 2001. Vol. 167. P. 451–460.
- 6. Maeba R. et al. // FEBS Lett. 1995. Vol. 377, N 3. P. 309-312.
- 7. Григорьева Д. В. и др. // Докл. НАН Беларуси. 2012. Т. 56, № 6. С. 47–50.
- 8. Gorudko I. V. et al. // Biology Open. 2013. Vol. 2. P. 916–923.
- 9. Lau D. et al. // PNAS. Vol. 102, N 2. P. 431-436.
- 10. Harfi I., Corazza F., D'Hondt S., Sariban E. // J. Immunol. 2005. Vol. 175. P. 4091–4102.
- 11. *Timoshenko A. V.* et al. // Methods Mol. Med. 1998. Vol. 9. P. 441–451.
- 12. Горудко И. В. и др. // Биоорг. химия. 2009. Т. 35, № 5. С. 629–639.
- 13. Grynkiewicz G., Poenie M., Tsien R. Y. // J. Biol. Chem. 1985. Vol. 260, N 6. P. 3440-3450.
- 14. $Berton\ G.,\ Lowell\ C.\ A.\ //\ Cell.\ Signal.\ 1999.\ Vol.\ 11,\ N\ 9.\ P.\ 621-635.$
- 15. Wijetunge S., Lymn J. S., Hughes A. D. // British J. of Pharmacology. 2000. Vol. 129. P. 1347-1354.

D. V. GRIGORIEVA, I. V. GORUDKO, A. V. SOKOLOV, E. V. SHAMOVA, V. B. VASILIEV, O. M. PANASENKO, S. N. CHERENKEVICH

dargr@tut.by

REGULATION OF CA2+-SIGNALING IN NEUTROPHILS BY MYELOPEROXIDASE

Summary

It is shown that myeloperoxidase (MPO) initiates an increase in the concentration of intracellular free calcium ions in neutrophils caused both by the release of calcium ions from intracellular stores, and extracellular Ca^{2+} entry across the plasma membrane channels. It is found that MPO modified by hypohalous acids retains its ability to induce Ca^{2+} -signaling in neutrophils. It is established that MPO-induced entry of Ca^{2+} into cytosol of neutrophils is not associated with its catalytic activity, but caused by direct binding of MPO to α -subunit of β_2 -integrin of neutrophils and tyrosine kinase activation.