2016

май-июнь

Том 60 № 3

УДК 536.424

Член-корреспондент И. О. ТРОЯНЧУК¹, М. В. БУШИНСКИЙ¹, Д. В. КАРПИНСКИЙ¹, А. Н. ЧОБОТ¹, Н. В. ТЕРЕШКО¹, О. С. МАНТЫЦКАЯ¹, Г. М. ЧОБОТ²

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СЛАБЫЙ ФЕРРОМАГНЕТИЗМ МУЛЬТИФЕРРОИКОВ Ві₁₋, Ca, Fe₁₋, Mn, O₃

¹НПЦ НАН Беларуси по материаловедению, Минск, Беларусь troyan@physics.by; bushinsky@physics.by; karpinsky@ifttp.bas-net.by; a.n.chobot@tut.by; tereshko@physics.by; mantytskaja@physics.by ²Белорусский государственный аграрный технический университет, Минск, Беларусь g.m.chobot@tut.by

Проведено исследование кристаллической структуры и магнитных свойств мультиферроиков $\operatorname{Bi}_{1-x}\operatorname{Ca}_x\operatorname{Fe}_{1-x}\operatorname{Mn}_x\operatorname{O}_3$ ($x \le 0,22$). Обнаружена следующая последовательность кристаллоструктурных превращений в стехиометрических составах: ромбоэдрическая (пр. группа R3c) полярная фаза ($x \le 0,18$), орторомбическая (пр. группа Pnma) неполярная фаза (x > 0,19). Полярная фаза является антиферромагнитной и проявляет метамагнетизм при x < 0,10. Полярная и неполярная фазы являются слабыми ферромагнетиками при комнатной температуре со спонтанной намагниченностью, близкой к 0,07 еmu/g (x = 0,18 и x = 0,22). Понижение температуры ведет к переходу в состояние, близкое к антиферромагнитному.

Ключевые слова: мультиферроики, магнитные материалы, дифракция, фазовые переходы, намагниченность.

I. O. TROYANCHUK¹, M. V. BUSHINSKY¹, D. V. KARPINSKY¹, A. N. CHOBOT¹, N. V. TERESHKO¹, O. S. MANTYTSKAYA¹, G. M. CHOBOT²

CRYSTAL STRUCTURE AND WEAK FERROMAGNETISM OF Bi1_, Ca, Fe1_, Mn, O3 MULTIFERROICS

¹Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk, Belarus troyan@physics.by; bushinsky@physics.by; karpinsky@ifttp.bas-net.by; a.n.chobot@tut.by; tereshko@physics.by; mantytskaja@physics.by

²Belarusian State Agrarian Technical University, Minsk, Belarus g.m.chobot@tut.by

The crystal structure and magnetic properties of $\text{Bi}_{1-x}\text{Ca}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ ($x \le 0.22$) have been studied. It was shown that the rhombohedral (R3c) polar phase at x > 0.18 transforms into the nonpolar orthorhombic phase (Pnma). The polar phase is antiferromagnetic and metamagnetic at x < 0.1. The polar and nonpolar phases are weak ferromagnets with remnant magnetization around 0.07 emu/g (x = 0.18 and x = 0.22). Decreasing the temperature leads to the state close to antiferromagnetic.

Keywords: multiferroics, magnetic materials, diffraction, phase transitions, magnetization.

Введение. Мультиферроики на основе BiFeO₃ являются редкими материалами, в которых одновременно реализуется магнитное и дипольное упорядочение при температурах, значительно больших, чем 300 K [1; 2]. BiFeO₃ обладает очень большой спонтанной поляризацией и значительным магнитоэлектрическим эффектом [1; 2]. Это делает материалы на основе BiFeO₃ привлекательными для практических применений. В работах [1; 3] показано, что магнитоэлектрические и пьезоэлектрические свойства мультиферроиков усиливаются вблизи морфотропной фазовой границы, где появляется кристаллоструктурная неустойчивость. В исходном соединении BiFeO₃ обнаружено, что вследствие конкуренции между магнитоэлектрическим эффектом и магнитным взаимодействием типа Дзялошинского–Мория реализуется несоразмерная цикло-

идально-модулированная антиферромагнитная структура, которая ведет к отсутствию спонтанной намагниченности и линейного магнитоэлектрического эффекта [4–7]. Этот тип магнитной структуры в незамещенном BiFeO₃ разрушается в большом магнитном поле 12–20 Тл [5; 6]. При метамагнитном переходе наблюдался скачок намагниченности величиной около 0,25 emu/g, что означает, что индуцированная магнитным полем фаза является слабоферромагнитной. Для практических применений желательно получить составы, в которых при комнатной температуре реализуются одновременно слабоферромагнитное и сегнетоэлектрическое состояния. При замещении ионов Bi³⁺ на редкоземельные ионы наблюдалось значительное снижение критического поля, приводящего к переходу в слабоферромагнитное состояние. Однако однородное слабоферромагнитное состояние в пределах сегнетоэлектрической фазы не реализуется [3; 8; 9]. В результате нейтронографических исследований установлено, что циклоидально-модулированная антиферромагнитная структура сохраняется во всем структурном интервале существования полярной ромбоэдрической фазы в Bi_{1-x}Pb_xFe_{1-x}Ti_xO₃ [10]. Период модуляции увеличивается с ростом содержания титана [10]. В этой системе при x = 0,3 существует морфотропная фазовая граница, вблизи которой полярная ромбоэдрическая фаза переходит в полярную тетрагональную.

Цель работы – установление закономерностей реализации слабоферромагнитного состояния в мультиферроиках на основе BiFeO₃.

Материалы и методы исследования. Образцы составов $Bi_{1-x}Ca_xFe_{1-x}Mn_xO_3$ ($x \le 0,22$) были получены методом твердофазного синтеза по обычной керамической технологии. Исходные реагенты высокой чистоты Bi_2O_3 , $CaCO_3$, Mn_2O_3 и Fe_2O_3 были взяты в стехиометрическом соотношении и смешаны в планетарной шаровой мельнице фирмы RETSCH (PM-100). Синтез проведен на воздухе при температуре, которая постепенно увеличивалась от 910 °C (x = 0,05) до 990 °C (x = 0,22). Для гомогенизации состава синтез проводился в течение длительного периода времени – около 20 ч. Существенных потерь висмута не наблюдалось. Исходный BiFeO₃ был получен методом кратковременного синтеза при 870 °C в течение 10 мин с последующей закалкой на воздухе. Рентгеноструктурные исследования были проведены при комнатной температуре с использованием дифрактометра ДРОН-3М в Cu-K_a излучении. Нейтронографические исследования проведены на порошковом дифрактометре высокого разрешения Е9 в Центре нейтронных исследований BENSC (Берлин, Германия). Уточнение кристаллической и магнитной структур было выполнено с использованием пакета программ Fullprof. Магнитные измерения в полях до 14 Тл проведены на универсальной измерительной системе фирмы Cryogenic Ltd.

Результаты и их обсуждение. Согласно рентгенографическим исследованиям, дифракционные пики рентгеновских спектров образцов серии твердых растворов $\text{Bi}_{1-x}\text{Ca}_x\text{Fe}_{1-x}\text{Mn}_x\text{O}_3$ могут быть проиндексированы в пространственной ромбоэдрической полярной группе R3c ($x \le 0,18$) и в неполярной орторомбической группе Pnma ($x \ge 0,20$). Состав x = 0,19 содержал как ромбоэдрическую фазу R3c, так и орторомбическую Pnma, что характерно для фазового перехода первого рода. На рис. 1 представлены рентгенограммы составов x = 0,18 и x = 0,20. Наблюдалось хорошее согласие между расчетными и экспериментальными данными. Дифракционные пики не уширены, что характерно для структурно однофазных образцов.

Нейтронографические дифракционные измерения в зависимости от температуры были проведены для образца x = 0,12 (рис. 2). При повышении температуры от 400 до 500 °C был обнаружен кристаллоструктурный переход из полярной ромбоэдрической фазы R3c в неполярную орторомбическую Pnma. Это согласуется с результатами рентгеноструктурных исследований при комнатной температуре.

Рассчитанные параметры кристаллической и магнитной структур состава x = 0,12 при комнатной температуре и при 500 °C приведены в таблице. Замещение висмута на кальций и железа на марганец ведет к существенному уменьшению объема элементарной ячейки и уменьшению величины ромбоэдрических искажений по сравнению с исходным BiFeO₃[1]. Это свидетельствует об уменьшении спонтанной поляризации при увеличении содержания кальция и марганца. Рассчитанное содержание анионов кислорода соответствует стехиометрическому составу. Это означает, что марганец замещает трехвалентное железо, находясь в окислительном состоянии 4+. Рассчитанная магнитная структура является антиферромагнитной структурой G-типа (шахмат-

Рис. 1. Рентгенограммы составов Bi_{0.82}Ca_{0.18}Fe_{0.82}Mn_{0.18}O₃ и Bi_{0.80}Ca_{0.20}Fe_{0.80}Mn_{0.20}O₃, полученные при комнатной температуре (экспериментальные данные – кружки, рассчитанные – сплошная линия). Позиции брэгговских рефлексов обозначены вертикальными штрихами (сверху вниз: ромбоэдрическая и орторомбическая фазы)

Рис. 2. Нейтронограмма состава Bi_{0.88}Ca_{0.12}Fe_{0.88}Mn_{0.12}O₃, полученная при комнатной температуре (экспериментальные данные – кружки, рассчитанные – сплошная линия). Позиции брэгговских рефлексов обозначены вертикальными штрихами (сверху вниз: ромбоэдрическая и магнитная фазы). На вставках показано изменение характерных рефлексов (магнитных (*a*) и кристаллоструктурных (*б*)) при изменении температуры

ный порядок типа магнитного упорядочения). Магнитный момент при комнатной температуре равен 2,9 $\mu_{\rm b}$. Температура Нееля находится вблизи 300 °C, что свидетельствует об ослаблении величины магнитных взаимодействий при замещении железа на марганец. Сверхобменные взаимодействия между ионами Fe³⁺–Fe³⁺ или Mn⁴⁺–Mn⁴⁺ должны быть антиферромагнитными [11]. Однако знак обменного взаимодействия Fe³⁺–Mn⁴⁺ может быть положительным либо отрицательным в зависимости от локальных структурных параметров [11]. Поэтому магнитный порядок может быть неоднородным вследствие флуктуаций кристаллической структуры в твердом растворе.

Температура	Комнатная	500 °C
Пространственная группа	R3c	Pnma
	Параметры элементарной ячей	ки
<i>a</i> , Å	5,5482(1)	5,5921(4)
b, Å	5,5482(1)	7,8711(5)
<i>c</i> , Å	13,729(4)	5,5216(4)
Координаты атомов		
Bi/Ca	0, 0, 0	0,5278(1), 0,25, 0,0064(1)
Fe/Mn	0, 0, 0,2220(4)	0, 0, 0
O(1)	0,4444(5), 0,0153(6), 0,9565(3)	-0,0125(2), 0,25, -0,0690(2)
O(2)	-	0,2883(1), 0,0410(8), 0,2089(1)
Длины связей		
Fe/Mn - O(1), Å	2,074(5)	2,006(2)
Fe/Mn – O(2), Å	-	2,008(7)
Fe/Mn - O(2), Å	-	2,022(7)
Углы связей		
Fe/Mn – O(1) – Fe/Mn, град.	156,3(3)	157,7(1)
Fe/Mn – O(2) – Fe/Mn, град.	-	154,3(3)
Магнитный момент		
μ <i>z</i> , μ ₆	±2,89(2)	_
Факторы достоверности		
$R_{p}(\%) / R_{wp}(\%)$	3,77/5,00	4,25/5,69
$R_{Bragg}(\%)$	6,44	10,7
Магнитный <i>R</i> -фактор	3,54	_
χ^2	3,15	4,17

Рассчитанные из нейтронографических измерений структурные параметры кристаллической и магнитной структур состава x = 0,12

На рис. 3 представлены полевые зависимости намагниченности для составов x = 0,05; 0,17 и 0,20. Из рисунка видно, что состав x = 0,05 в отсутствие поля является полностью антиферромагнитным, т. е. отсутствует спонтанная намагниченность ионов. Однако в интервале полей 5–10 Тл наблюдается размытый по полю магнитный переход в состояние с большей намагниченностью. Увеличение магнитного момента при переходе близко к 0,2 emu/g, что коррелирует с данными по измерению намагниченности BiFeO₃ в импульсных магнитных полях [5; 6]. Данный переход связан с разрушением циклоидальной магнитной структуры и образованием однородной слабоферромагнитной структуры с небольшим скосом магнитных подрешеток [5; 6]. Этот магнитный переход исчезает в составе x = 0,1. В этом составе появляется остаточная намагниченность (приблизительно 0,025 emu/g), что обусловлено разрушением магнитной циклоиды в отсутствие внешнего магнитного поля. Магнитный гистерезис в высоких магнитных полях может быть обусловлен гигантской магнитной анизотропией, возникающей вследствие конкуренции взаимодействий на локальном уровне. С возрастанием содержания кальция и марганца спонтанный магнитный момент возрастает и достигает значения 0,07 emu/g в полярном

Рис. 3. Полевые зависимости намагниченности составов $Bi_{1-x}Ca_xFe_{1-x}Mn_xO_3$ (x = 0.05; 0.17; 0.22) при комнатной температуре. На вставке показано изменение намагниченности в слабых полях

Рис. 4. Температурные зависимости намагниченности составов $Bi_{1-x}Ca_xFe_{1-x}Mn_xO_3$ (x = 0,17 и 0,22), измеренные в поле 0,01 Тл

ромбоэдрическом составе x = 0,17 (рис. 3). Переход в неполярную орторомбическую фазу не меняет поведения спонтанной намагниченности и магнитного гистерезиса (рис. 3). Обе пространственные группы R3с и Pnma разрешают слабый ферромагнетизм. Однако предполагается, что магнитоэлектрические взаимодействия в сегнетоэлектрической фазе должны быть велики [1]. Поэтому можно сделать вывод, что магнитоэлектрические взаимодействия слабо влияют на спонтанную намагниченность вблизи морфотропной фазовой границы x = 0,19.

Спонтанная намагниченность аномально увеличивается с ростом температуры (рис. 4) как для ромбоэдрической, так и для орторомбической фаз. Это означает, что слабоферромагнитное состояние связано с константами магнитной анизотропии, которые резко меняются при понижении температуры. Подобный переход антиферромагнетик–слабый ферромагнетик наблюдался в ортоферритах [11]. По-видимому, вследствие этого перехода спонтанная намагниченность значительно меньше 0,25 emu/g, что ожидалось для слабоферромагнитного состояния.

Заключение. Проведено исследование кристаллической и магнитной структур мультиферроиков Bi_{1-x}Ca_xFe_{1-x}MnO₃. Определены температурные и концентрационные границы появления полярной ромбоэдрической (R3c) и неполярной орторомбической (Pnma) фаз. Показано, что эти

твердые растворы при $x \ge 0,1$ являются слабоферромагнитными и претерпевают переход в состояние близкое к антиферромагнитному при понижении температуры. Переход из полярного в неполярное состояние слабо влияет на спонтанную намагниченность.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант Т15Д-004).

Список использованной литературы

1. Catalan, G. Physics and Applications of Bismuth Ferrite / G. Catalan, J. F. Scott // Adv. Mater. - 2009. - Vol. 21. - P. 2463-2485.

2. Fiebig, M. Revival of the magnetoelectric effect / M. Fiebig // J. Phys. D: Appl. Phys. - 2005. - Vol. 38. - P. 123-155.

3. Isothermal structural transitions, magnetization and large piezoelectric response in $Bi_{1-x}La_xFeO_3$ perovskites / I. O. Troyanchuk [et. al.] // Phys. Rev. B. – 2011. – Vol. 83. – P. 054109–054115.

4. *Sosnowska, I.* Spiral magnetic ordering in bismuth ferrite / I. Sosnowska, T. Peterlin-Neumaier, E. Steichele // J. Phys. C: Solid State Phys. – 1982. – Vol. 15. – P. 4835–4846.

5. Нарушенная четность относительно инверсии пространства и времени и магнитоэлектрические взаимодействия в антиферромагнетиках / А. М. Кадомцева [и др.] // Письма в ЖЭТФ. – 2004. – Т. 79, вып. 11. – С. 705–716.

6. *Tokunaga, M.* High-field study of multiferroic BiFeO₃ / M. Tokunaga, M. Azuma, Y. Shimakawa // J. Phys.: Conf. Series. – 2010. – Vol. 200. – P. 012206–012212.

7. *Wojdel, J. C.* Ab Initio Indications for Giant Magnetoelectric Effects Driven by Structural Softness / J. C. Wojdel, J. Iniguez // Phys. Rev. Lett. – 2010. – Vol. 105, N 3. – P. 037208–037212.

8. Слабый ферромагнетизм в мультиферроиках на основе BiFeO₃ / И. О. Троянчук [и др.] // Письма в ЖЭТФ. – 2009. – Т. 89, вып. 4. – С. 204–208.

9. Structural transformations and magnetic properties of $Bi_{1-x}Ln_xFeO_3$ (Ln = La, Nd, Eu) mulniferroics / I. O. Troyanchuk [et al.] // Phys. Status Solidi B. – 2009. – Vol. 246. – P. 1901–1907.

10. Change in periodicity of the incommensurate magnetic order towards commensurate order in bismuth ferrite lead titanate / T. Stevenson [et al.] // J. Magn. Magn. Mater. – 2010. – Vol. 322, N 22. – P. L64–L67.

11. Гуденаф, Д. Магнетизм и химическая связь / Д. Гуденаф. – М., 1968.

Поступило 25.01.2016