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The smooth barrier of finite height and variable shape is constructed by means of joining the central inverted parabolic
potential and two side parabolic potentials. The problem of tunneling through this barrier is solved exactly. The dependence
of the transmission coefficient on energy is presented. The real and imaginary components of wave functions are shown.
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Hucmumym ¢pusuxu um. b. U. Cmenanosa HAH benapycu, Munck, Pecnyonuka Bearapyce
TYHHEJIMPOBAHUE YEPE3 I'TA IKU TAPABOJIMYECKHU I BAPBEP KOHEYHOM BBICOTBI
(Ilpeocmasneno unenom-xkoppecnonoenmom JI. M. Tomunvuuxom)

I'mankuii Gapbep KOHEUHOW BEICOTHI M BAPbUPYEMOH (JOPMBI MOCTPOEH C OMOIIBIO COSANHEHHS IEHTPAIFHOTO MepeBep-
HYTOTO 1apaboIM4ecKoro MOTSHIHANA U IBYX OOKOBBIX Mapa0oIMYecknX IOTEHIINAIOB. 3a/1a4a O TYHHEIMPOBAHUHA Yepe3 ITOT
Gapbep pemrena TouHo. [Ipencrasiena 3aBHCHMOCTD KO QHIIEHTa IPOXOXKIACHHS OT SHeprun. [1oka3aHbl peasbHbIe 1 MHAMBIC
COCTABIISAIOIINE BOJHOBBIX (DYHKITHH.

Kniouesvie cnosa: TyHHETMpOBaHHE, TapadoIMIecKuii 6apbep, KOAPGUINEHT MPOXOKICHIS.

Introduction. Tunneling of a particle through a potential barrier is one of the important phenomena
of quantum mechanics. The interest in this problem ranges from various branches of physics to chemistry.
However, a limited number of potentials can be solved exactly [ 1]. Among them there are several parabolic
potentials.

First of all, it is an inverted harmonic oscillator [2; 3] V' (¢) = —kg ? which is too much idealized in our
opinion. A truncated inverted parabolic potential [4; 5]
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is more realistic for simulation of physical process. The potential function (1) has a finite height Vo and
its first derivative is discontinuous at the points g =t¢j.

At last, it should be noted that a double oscillator model [6; 7] V(¢) =Vo( ¢ |—g0)? / g& of double-
well potential can be modified to a single parabolic barrier
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This quadratic potential of a finite height consists of two parabolas which meet with discontinuous slope
at the point ¢ =0.

Both potentials (1) and (2) are not smooth. At the same time it is possible to construct a smooth
potential with the help of a inverted parabola in the central region and two shifted parabolas in both side
regions. The new potential function is of the form
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Here 0<g<1. The second derivative of the function (3) is discontinuous at the points ¢ =+g, and
q =tgq,. However, both the function (3) and its first derivative are continuous. The considered potential
barrier coincides with (1) if g =1 and with (2) if g =0. The presence of a varied parameter g allows to
change a shape of barrier (3) in the wide range. Due to this circumstance the proposed potential becomes
very helpful for simulation of tunneling phenomena.

Analytical solution. We are interesting in solving the Schrédinger equation
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where V' (g) takes the form (3). It is convenient to introduce dimensionless quantities
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The transformed Schrodinger equation is given as
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The shape of v(x) is shown in fig. 1 for different values of g when xo = 2. Here and in subsequent figures
we use dotted lines for g =0.1, solid lines for g =0.5 and dashed lines for g =0.9.

The simplicity of the considered potential (5) permits to find the exact solutions of Eq. (4) in five
regions. The wave function is represented in the following way

exp(i\/g x) + A exp(—ive x), X <—xq,

A yo(zg)+ Az v (z5), —Xg <X <—gXg,
Y(x)=1 Agya(ze)+4ds yealze),  —gro <x<gxo,
Ao ya(zs)+ A7 2 (zs), gxo <x <X,

Ag exp(i\/gx), x> Xg.

There are the incident and reflected waves in the region x < —x, and there is the transmitted wave
in the region x> xq. It is not hard to show that the particular solutions in the region —xg < x < xq are
expressed in terms of the confluent hypergeometric functions [8]. In the side regions —xq < x < —gxg and
gxo < x < Xxg, the explicit solutions are given by formulas
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In the central region —gXxq < X < gXo, We have the following solutions
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It should be stressed that these solutions are real.

By joining the wave function and its first derivative smoothly at four points X = —Xg,

= — OXo, 9Xo, Xo WE
obtain the system of eight algebraic equations for eight coefficients A;. It is easily to solve this system but
the solutions are very cumbersome. Therefore we represent only one coefficient
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Fig. 1. The scaled potential v(x) for different values of g Fig. 2. Dependence of T on e for x =2
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Fig. 3. Dependence of T on € for X, = 10 Fig. 4. Dependence of T on large € for X, = 10

Fig. 5. Wave function for x =2 Fig. 6. Wave function for X, = 10

dij (75) -

V§=Ys(Zs): V= d7 Zs=25(0%0) = /2%, (1- ).
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The square of the absolute value of Ag is the transmission coefficient T for the proposed barrier (3).
The final exact expression is
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Graphic illustrations. The dependence of the transmission coefficient T on a scaled energy e is given
in fig. 2 for X, =2 and in fig. 3 for X, =10 at different values of g. It should be noted that T can be equal
to 1 at selected values of e for e >1 (or E >V,). This property is demonstrated in fig. 4 for x, =10. For
example, T =1 ate=1.83062, 2.48069, 3.22345,4.51937 forl <e<5if g =0.5 and x, =10.

At last, the real (solid lines) and the imaginary (dashed lines) components of wave functions are
represented in fig. 5 for X, =2 and in fig. 6 for X, =10 ate=0.95and g =0.5.

Conclusion. The proposed parabolic potential extends a short list of exactly solvable models that
describe tunneling through barriers. The variable shape of considered barrier gives the wide possibilities
to simulate the tunneling phenomena. In the present paper, we examined a symmetric potential but it is
not hard to construct an asymmetric smooth parabolic potential. In addition to the case of a single barrier
it will be desirable to investigate the system of the several barriers.
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