ISSN 0002–354X (print) УДК 54.057, 577.113.3

Поступило в редакцию 06.10.2016 Received 06.10.2016

Т. С. Божок, член-корреспондент Е. Н. Калиниченко

Институт биоорганической химии НАН Беларуси, Минск, Республика Беларусь

СИНТЕЗ 2'-ДЕЗОКСИ-2'-ФТОР-D-АРАБИНОНУКЛЕОЗИДОВ 6-ЗАМЕЩЕННОГО ТИМИНА

Исследования в области химии фторнуклеозидов являются актуальным направлением современной биоорганической и медицинской химии компонентов нуклеиновых кислот. Настоящая работа посвящена синтезу 2'-дезокси-2'фтор-D-арабинофуранозил нуклеозидов 6-замещенного тимина с целью изучения их биологической активности. Конвергентный синтез пиримидиновых С(2')-α/β-фторзамещенных нуклеозидов осуществлен путем конденсации 2,4-бис-О-триметилсилильного производного 6-фтортимина с 3,5-ди-О-бензоил-2-дезокси-2-фтор-α-D-арабинофуранозил бромидом. Конденсация 1-α-бромсахара и персилильного производного 6-фтортимина при кипячении в хлороформе приводила к образованию смеси блокированных N(1)-α/β-D-нуклеозидов 6-фтортимина, которые выделены колоночной хроматографией на силикагеле с выходом 29 и 5 % соответственно. Стандартная процедура деблокирования индивидуальных бензоилированных α/β-нуклеозидов 6-фтортимина аммиаком в метаноле приводила к замещению атома фтора в 6-положении гетероцикла с образованием 2'-дезокси-2'-фтор-β/α-D-арабинозидов 6-амино- и 6-метокситимина. Показано, что дебензоилирование промежуточного С(2')-β-арабинозида 6-фтортимина под действием моногидрата гидроксида лития в смеси ацетонитрил-вода приводило к целевому нуклеозиду с высоким выходом (82 %). Разработан подход к синтезу 2'-фтор-6,3'-О-α-D-ангидронуклеозидов путем реакции внутримолекулярной циклизации в результате удаления защитных групп бензоильного производного 2'-фтор-α-Dарабинофуранозил-6-фтортимина в основных условиях. Структура синтезированных нуклеозидов установлена на основании данных УФ-, ЯМР-, КД- и масс-спектроскопии.

Ключевые слова: пиримидиновые нуклеозиды, синтез, 6-фтортимин, арабинонуклеозиды, 2'-фтордезоксианалоги, ангидронуклеозиды.

T. S. Bozhok, Corresponding Member E. N. Kalinichenko

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

SYNTHESIS OF 6-SUBSTITUTED THYMINE 2'-DEOXY-2'-FLUORO-D-ARABINOFURANOSYL NUCLEOSIDES

New 6-fluorothymine 2'-deoxy-2'-fluoro-D-arabinofuranosyl nucleosides were prepared by the silyl method starting from persilylated 6-fluorothymine and 3,5-di-O-benzoyl-2-deoxy-2-fluoro- α -D-arabinofuranosyl bromide. A mixture of benzo-ylated N(1)- β - and α -anomeric 6-fluorothymine 2'-fluorodeoxy arabinonucleosides was obtained by refluxing in CHCl₃ with a 34 % yield. 6-Substituted (OMe, NH₂) thymine 2'-deoxy-2'-fluoro-D-arabinonucleosides were prepared by the treatment of individually protected N(1)- α/β -D-arabinosides with methanolic ammonia. It is shown that mild deprotection of the benzoyl groups of intermediate 6-fluorothymine β -nucleoside using LiOH monohydrate in a mixture of acetonitrile-water resulted in the target nucleoside in good yields (82 %). An approach to the synthesis of 2'-fluoro-6,3'-O- α -D-anhydronucleosides was developed as a result of the intramolecular substitution reaction of the fluorine atom at the C(6)-position of the heterocycle by the C(3')-hydroxyl group of an intermediate deprotected nucleoside during the removal of the protective groups of 6-fluorothymine N(1)- α -arabinonucleoside under the basic reaction conditions. The structures of all synthesized nucleosides were proved by UV-, NMR-, CD- and mass-spectroscopy.

Keywords: pyrimidine nucleosides, 6-fluorothymine, arabinonucleosides, 2'-fluorodeoxy analogues, anhydronucleosides, synthesis.

Введение. Актуальным направлением в структурных модификациях природных нуклеозидов является введение атома фтора в углеводный фрагмент и (или) гетероциклическое основание молекулы [1; 2]. Интерес к созданию новых терапевтически значимых фторсодержащих нуклеозидных аналогов обусловлен их уникальными физико-химическими и биологическими свойствами [3]. Установлено, что фторсодержащие нуклеозиды отличаются хорошей растворимостью, высокой химической стабильностью, имеют улучшенные фармакокинетические свойства, менее токсичны. Большое количество публикаций посвящено синтезу 2'(3')-фтордезоксинуклеозидных аналогов, среди которых обнаружены соединения с высокой противовирусной активно-

© Божок Т. С., Калиниченко Е. Н., 2017.

стью в отношении вирусов иммунодефицита человека (ВИЧ), простого герпеса, гепатита В и С, а также соединения, эффективные для лечения рака крови [4]. Модифицированные в гетероциклическом основании нуклеозиды также являются важным объектом исследований для разработки потенциальных антивирусных и противоопухолевых агентов [5]. В отличие от 5-фторпиримидинов синтез и биологическая активность 6-фтортимина и его нуклеозидов мало изучены, и только несколько работ опубликовано по синтезу и антивирусной активности гликозидов этого труднодоступного пиримидина и их аналогов, полученных замещением атома фтора в 6-м положении гетероцикла различными нуклеофильными агентами [6; 7]. Следует отметить, что получение 2'-фтордезоксинуклеозидов 6-фтортимина остается неизученной областью химии нуклеозидов.

Ранее нами получены новые D-рибонуклеозиды 6-фтортимина и их 3'-фторсодержащие аналоги [8]. Показано, что регио- и стереоселективность N-гликозилирования 2,4-бис(триметилсилил)-6-фтортимина с перацильными производными D-рибозы в CH₃CN в присутствии триметилсилил трифторметансульфоната (TMSOTf) зависит от температуры и приводит к образованию N(1)-βи N(1)-α-рибонуклеозидов или исключительно к N(3)-β-изомеру. Выход (42–60 %) целевых блокированных N(1)-β-рибонуклеозидов 6-фтортимина и стереоселективность реакции конденсации (β : α – 2,2/4,5 : 1) при низких температурах зависят от способа силилирования гетероциклического основания и структуры гликозилирующего агента.

С целью поиска новых биологически значимых 2'-фтор-β-D-арабинонуклеозидов в настоящей работе осуществлен синтез ранее неизвестных 2'-фторсодержащих аналогов 6-замещенного тимина.

Результаты и их обсуждение. Наиболее изученным и эффективным методом синтеза пиримидиновых 2'-дезокси-2'-фтор- β -D-арабинонуклеозидов является реакция конденсации блокированного 2-дезокси-2-фтор- α -D-арабинофуранозил бромида с силилированными производными гетерооснований и последующим удалением защитных групп промежуточных нуклеозидов под действием нуклеофильного агента [9]. Реакция образования β -нуклеозида протекает по S_N2механизму в присутствии таких растворителей, как ацетонитрил, 1,2-дихлорэтан, хлороформ, тетрахлорметан и др. При этом наряду с основным продуктом реакции конденсации наблюдается образование α -аномера. Исследования показали, что в случае 2'-фтордезоксинуклеозидов урацила и тимина лучшая стереоселективность достигается при использовании менее полярных растворителей [9; 10].

Конденсация 1- α -бромсахара 2, полученного обработкой перацильного производного 2-дезокси-2-фтор-D-арабинофуранозы 1 НВг/АсОН в хлористом метилене [11], с 1,5 избытком персилильного производного 6-фтортимина 3 при кипячении в хлороформе в течение 30 ч давала смесь блокированных N(1)- β/α -изомеров 4 и 5 в соотношении 6 : 1 с невысоким выходом (34 %), которые были разделены колоночной хроматографией на силикагеле. Проведение реакции в 1,2-дихлорэтане существенно снижало выход β -нуклеозида (13 %). Наряду с классическими продуктами реакции в незначительном количестве (3 %) выделено дипроизводное 6. Использование N,O-бис(триметилсилил)-трифторацетамида (BSTFA) вместо гексаметилдисилазана (HMDS) / триметилхлорсилана (TMSCI) при силилировании 6-фтортимина не влияло на выход блокированных N(1)- β/α -нуклеозидов. Следует отметить, что выход S_N2-реакции гликозилирования пиримидинового основания 2-дезокси-2-фтор- α -D-арабинофуранозил бромидом существенно зависит от природы гетероцикла и уменьшается в ряду: урацил, тимин, 6-фтортимин.

Стандартная процедура деблокирования индивидуальных бензоилированных нуклеозидов 4 и 5 аммиаком в метаноле приводила к замещению атома фтора в 6-положении гетероцикла с образованием 2'-дезокси-2'-фтор- β/α -D-арабинозидов 6-амино- и 6-метокситимина 8–11, которые были выделены в индивидуальном состоянии колоночной хроматографией на силикагеле.

Нами найдено, что обработка C(2')-β-арабинозида 6-фтортимина 4 под действием моногидрата гидроксида лития в смеси ацетонитрил–вода (3 : 1,3, v/v) [8] приводила к целевому нуклеозиду 7 с высоким выходом (82 %). Аналогичная щелочная обработка индивидуального блокированного α-нуклеозида 5 неожиданно давала 2'-фтор-6,3'-α-D-ангидронуклеозид 12 с вы-

ходом 89 %, образование которого в процессе удаления защитных групп протекало в результате внутримолекулярной реакции замещения атома фтора при C(6) гетероцикла гидрокси группой при C(3')-атоме промежуточного деблокированного нуклеозида 5. Ранее нами обнаружен новый подход к синтезу 6,2'-О- α -D-ангидронуклеозидов из N(1)- α -D-рибонуклеозидов 6-фтортимина [8]. Необычным является тот факт, что атом фтора при C(2')- или C(3')-позиции углеводного фрагмента нуклеозида сохраняется, что приводит к образованию 6,3'-О- α -D- либо 6,2'-О- α -D- ангидронуклеозидов соответственно. Следует отметить, что только в одном случае [12] в ходе исследования внутримолекулярной реакции Форбрюггена сообщалось об образовании 6,3'-О- α -D-ангидро-2'-дезоксиуридина путем 3',5'-циклизации с последующей перегруппировкой.

Структура синтезированных соединений доказана на основании данных УФ-, ЯМР-, КДи масс-спектрометрии.

Спектры УФ-поглощения β-нуклеозидов 7–9 в нейтральных, кислых и щелочных водных растворах подтверждают образование гликозидной связи по N(1)-положению гетероцикла. Так, в кислой среде максимум поглощения соединения 7 идентичен максимуму, полученному в нейтральной водной среде, и составляет 254 нм, а в щелочных условиях происходит незначительный батохромный сдвиг максимума до 258 нм, что характерно для N(1)-нуклеозидов 6-фтортимина и показано в работах [6; 8]. Следует отметить, что в отличие от N(1)-нуклеозидов 6-фтортимина их N(3)-изомеры показывают значительный батохромный сдвиг (281 нм) не только при pH 12, но и при нейтральных значениях pH.

Конфигурация аномерных центров арабинонуклеозидов 6-фтортимина 4 и 5 подтверждена данными ЯМР спектроскопии. В ¹³С ЯМР спектрах β/α -аномерных N(1)-нуклеозидов 4 и 5 наблюдаются близкие величины химических сдвигов всех резонансных сигналов атомов углерода гетероциклического основания и констант спин-спинового взаимодействия (КССВ) С(2), С(4), С(5), С(6) атомов и атомом фтора при С(6). Наиболее характерной особенностью перехода от β-аномерной конфигурации нуклеозидов 4 и 5 является смещение резонансного сигнала Н(4') в слабое поле (0,63 м. д.) в спектре ПМР (см. эксперимент). Интересно отметить наличие в ¹³С ЯМР спектре β-нуклеозида 4 дальней КССВ через пять связей между С(3') углеродом углеводной части и атомом фтора гетероцикла (${}^{5}J_{C3',F6}$ 3,9 Гц), а для α -изомера 5 КССВ через три связи между С(1') и F(6) (${}^{3}J_{C1',F6}$ 8,1 Гц), что также свидетельствует о присоединении 2-дезокси-2-фтор-D-арабинофуранозы к N(1)-атому 6-фтортимина в обоих продуктах конденсации и подтверждает их аномерную конфигурацию. Спин-спиновое взаимодействие через пять связей в случае β-изомера 4 представляет собой прямое магнитное взаимодействие ядер через пространство и отражает конформационные особенности молекулы [13].

Большие величины геминальных КССВ ²*J*_{H2',F2'} (50–57 Гц) наблюдаются в спектрах ПМР синтезированных фторпроизводных **4–12**, что является характеристичным для определения положения атома фтора. Наличие резонансных сигналов атомов фтора при C(6) в области –94,01...

-98,95 м. д. в ¹⁹F ЯМР спектрах нуклеозидов 4, 5 и 7, являющейся характерной для 6-фтортимина (-96,69 м. д.), также подтверждает структуру полученных производных 6-фтортимина. Выявлены дальние КССВ (25–29 Гц) в спектрах ¹⁹F ЯМР β-фтордезоксинуклеозидов 6-фтортимина 4 и 7 между С(6)-атомом фтора гетерооснования и С(2')-атомом фтора углеводной части.

В ¹Н ЯМР спектре производного **6** отсутствует резонансный сигнал N(3)-протона в составе 6-фтортиминового фрагмента, характерный для соединений **4** и **5**, а сравнение количества, положения и интегральной интенсивности сигналов нуклеозидных протонов дает основание предполагать наличие в молекуле дипроизводного **6** двух остатков бензоилированной фтордезоксиарабинозы, присоединенных по N(1)- и N(3)-положениям гетероцикла. Данные массспектрометрии также подтверждают димерную структуру соединения **6** (*m*/*z* 829 [M+H]⁺).

В ПМР спектрах 6-замещенных нуклеозидов **8** и **10** наблюдаются сигналы NH₂-группы в виде синглета при 6,63 и 6,43 м. д., а для соединений **9** и **11** – метокси группы при 3,88 и 3,90 м. д. соответственно.

Структура 6,3'-О- α -D-ангидронуклеозида 12 подтверждается данными ПМР и массспектрометрии. Наиболее информативным доказательством 6,3'-циклизации является сдвиг сигнала H(3')-протона в слабое поле на 1,09 м. д. по сравнению с деблокированным β -арабинозидом 6-фтортимина 7, а также отсутствие сигнала 3'-ОН группы при наличии соответствующих сигналов 3'-ОН и 5'-ОН групп для соединения 7. Кроме того, в масс-спектре α -циклонуклеозида 12 имеется интенсивный пик молекулярного иона – m/z 259 [M+H]⁺.

Дальнейшим подтверждением аномерной конфигурации 2'-дезокси-2'-фтор-D-арабинонуклеозидов 6-замещенного тимина 7–11 и структуры α -циклонуклеозида 12 являются данные КД-спектроскопии (рисунок). В КД-спектре α -аномеров 10 и 11 наблюдается отрицательный эффект Коттона при 265–268 нм, тогда как в спектрах β -аномеров 8 и 9 присутствует характерный в таких случаях положительный максимум при 260–268 нм. Ярко выраженный положительный эффект Коттона при 260 нм (полоса B_{2u}) с аномально большим значением амплитуды в КДспектре 6,3'- α -циклонуклеозида 12 обусловлен жесткой конформацией полученного нуклеозида и изменением электронной структуры модифицированного пиримидинового основания в сравнении с β -арабинонуклеозидом 6-фтортимина 7.

Изучена цитотоксическая активность 2'-фторсодержащих производных 7 и 8 *in vitro* на клеточных линиях карциномы лёгких (А-549) и шейки матки (HeLa), аденокарциномы молочной железы (MCF-7), хронического миелолейкоза (К-562), Т-лимфобластной лейкемии (MOLT-3) в сравнении с D-рибонуклеозидом 6-фтортимина. Предварительные данные показали, что соединение 7 подавляло рост клеток MOLT-3 в концентрации 1–10 мкМ в отличие от контроля. Клетки К-562, MOLT-3 и A-549 оказались абсолютно резистентны к новому нуклеозидному аналогу 8.

Экспериментальная часть. УФ-спектры регистрировали на спектрофотометре Cary 100 (Varian) в 0,1 н HCl (pH 1), в воде инъекционной и 0,1 н NaOH (pH 13) в диапазоне от 200 до 300 нм. Спектры ЯМР снимали на спектрометре Avance-500 (Bruker) с рабочей частотой 500 МГц для ¹Н ЯМР, 125 МГц для ¹³С ЯМР и 470 МГц для ¹⁹F ЯМР. Химические сдвиги сигналов протонов измерены относительно ТМС. Масс-спектры получены на хромато-масс-спектрометре в составе системы ВЭЖХ Agilent 1290 с масс-селективным детектором Agilent QTOF 6550 в условиях

КД-спектры соединений 7–12 в воде CD-spectra of compounds 7–12 in water

65

ионизации электрораспылением. Температуры плавления определены на микронагревательном столике Boethius и не исправлены. КД-спектры получены на спектрополяриметре Jasco J-20. Тонкослойная хроматография (TCX) проводилась на пластинках Kieselgel 60F₂₅₄ (Merck) в следующих системах растворителей: гексан–EtOAc, 3 : 2 (A), CHCl₃–MeOH, 7 : 1 (Б). Колоночную хроматографию проводили на силикагеле Kieselgel 60 (40–63 мкм, Fluka).

1-(3,5-Ди-О-бензоил-2-дезокси-2-фтор-β-D-арабинофуранозил)-6-фтортимин (4). Выход 29 %, белый порошок, т. пл. 187–189 °С (Et₂O/гексан), *R_f*(A) 0,38. Спектр ¹Н ЯМР (CDCl₃): δ 8,47 с (1H, HN), 8,06–7,39 м (10H, Bz), 6,76 дд (1H, H1', *J* 6,5, *J* 12,2), 5,95 дм (1H, H3', *J* 20,8), 5,49 ддд (1H, H2', *J* 4,3, *J* 52,9), 4,84 дд (1H, H5', *J* 3,5, *J* 12,2), 4,55 дд (1H, H5'', *J* 4,0), 4,32 м (1H, H4'), 1,78 д (3H, CH₃, *J* 2,2). Спектр ¹³С ЯМР (CDCl₃): δ 166,1 и 165,2 (2*C₆H₅<u>C</u>=O), 163,2 д (C4, *J* 17,8), 158,3 д (C6, *J* 274,5), 148,0 д (C2, *J* 4,4), 133,9–128,4 (12*C_{аром}), 93,7 д (C2', *J* 202,2), 92,9 д (C5, *J* 16,4), 81,4 д (C1', *J* 17,0), 77,1 (C4'), 75,8 дд (C3', *J* 3,9, *J* 25,7), 62,7 (C5'), 6,2 (CH₃). Спектр ¹⁹F ЯМР (CDCl₃): δ –94,01 д (FC6, *J* 29,5), –196,38 м (FC2'). Масс-спектр (HRMS), найдено: *m/z* 509,1125 (M+Na)⁺; вычислено: 509,1136.

1-(3,5-Ди-О-бензоил-2-дезокси-2-фтор-\alpha-D-арабинофуранозил)-6-фтортимин (5). Выход 5 %, белый порошок, т. пл. 110–112 °С (Еt₂О/гексан), R_f (А) 0,52. Спектр ¹Н ЯМР (CDCl₃): δ 8,41 с (1H, HN), 8,09–7,41 м (10H, Bz), 6,28 дт (1H, H1', *J* 20,1), 6,05 дт (1H, H2', *J* 54,3), 5,88 ддд (1H, H3', *J* 3,7, *J* 7,0, *J* 23,5), 4,95 м (1H, H4'), 4,69 дд (1H, H5', *J* 2,7, *J* 12,2), 4,53 дд (1H, H5'', *J* 4,4), 1,92 д (3H, CH₃, *J* 2,3). Спектр ¹³С ЯМР (CDCl₃): δ 166,1 и 165,6 (2[×]C₆H₅C=O), 163,6 д (C4, *J* 18,1), 157,3 д (C6, *J* 271,3), 148,3 д (C2, *J* 2,9), 133,8–128,4 (12[×]C_{аром}), 97,9 д (C2', *J* 188,3), 92,6 д (C5, *J* 17,2), 87,8 дд (C1', *J* 8,1, *J* 41,6), 82,4 д (C4', *J* 5,5), 77,6 д (C3', *J* 27,6), 63,7 (C5'), 6,49 (CH₃). Спектр ¹⁹F ЯМР (CDCl₃): δ –98,95 с (FC6), –184,58 м (FC2'). Масс-спектр (HRMS), найдено: *m*/*z* 509,1127 (M+Na)⁺; вычислено: 509,1136.

1,3-Бис-(3,5-ди-О-бензоил-2-дезокси-2-фтор-D-арабинофуранозил)-6-фтортимин (6). Выход 4 %, бесцветное масло, *R_f* (A) 0,70. Спектр ¹Н ЯМР (CDCl₃): δ 8,09–7,41 м (20H, Bz), 6,75 д (1H, H1' для N1, *J* 4,3), 6,62 д (1H, H1' для N3, *J* 4,5), 5,98 дт (1H, H3' для N1 или N3, *J* 16,2), 5,86 дт (1H, H3' для N1 или N3, *J* 16,4), 5,51–5,38 м (2H, H2' для N1 и N3, *J* 51,3), 4,78–4,47 (6H, H5', H5'', H4' для N1 и N3), 1,78 д (3H, CH₃). Спектр ¹³С ЯМР (CDCl₃): δ 169,5 д (C6, *J* 247,7), 169,5 д (C2, *J* 10,2), 166,0–165,6 (4×C₆H₅<u>C</u>=O), 159,7 д (C4, *J* 22,1), 133,9–128,3 (24[×]C_{аром}), 96,3–95,9 м (3С, С5, С1' для N1 и N3), 92,6 д (C2' для N1 или N3, *J* 203,4), 92,3 д (C2' для N1 или N3, *J* 204,3), 80,0 д (C4' для N1 или N3, *J* 6,9), 79,8 д (C4' для N1 или N3, *J* 7,4), 76,0 д (C3' для N1 или N3, *J* 25,0), 75,6 д (C3' для N1 или N3, *J* 24,1), 64,7–64,6 д (2C, C5' для N1 и N3), 6,5 (CH₃). Спектр ¹⁹Г ЯМР (CDCl₃): δ –62,93 с (FC6), –193,02 м (FC2' для N1 или N3), –194,05 м (FC2' для N1 или N3). Масс-спектр (HRMS), найдено: *m/z* 829,2231 (M+H)⁺; вычислено: 829,2220.

1-(2-Дезокси-2-фтор-β-D-арабинофуранозил)-6-фтортимин (7). Выход 82 %, бесцветное масло, R_f (Б) 0,50. Спектр УФ λ, нм (lg є): pH 1, λ_{max} 254 (3,95), λ_{min} 229 (3,60); pH 7, λ_{max} 254 (3,95), λ_{min} 229 (3,60); pH 13, λ_{max} 258 (3,84), λ_{min} 241 (3,68). Спектр ¹Н ЯМР (DMSO-d₆): δ 11,78 уш. с (1H, NH), 6,54 дд (1H, H1', *J* 6,8, *J* 11,2), 5,87 д (1H, 3'OH, *J* 5,6), 5,24 ддд (1H, H2', *J* 5,2, *J* 54,9), 4,88 т (1H, 5'OH, *J* 5,3), 4,18 дм (1H, H3', *J* 23,8), 3,68–3,48 м (3H, H4', H5', H5''), 1,73 д (3H, CH₃, *J* 2,2). Спектр ¹³С ЯМР (DMSO-d₆): δ 163,0 д (C4, *J* 17,6), 157,9 д (C6, *J* 273,3), 148,0 д (C2, *J* 4,5), 96,4 д (C2', *J* 195,5), 90,8 д (C5, *J* 15,5), 80,6 д (C4', *J* 8,5), 79,7 д (C1', *J* 16,3), 72,8 дд (C3', *J* 3,7, *J* 21,5), 60,3 (C5'), 6,0 (CH₃). Спектр ¹⁹Г ЯМР (DMSO-d₆): δ –94,52 д (FC6, *J* 24,7), –197,63 м (FC2'). Масс-спектр (HRMS), найдено: *m/z* 288,0525 (M+Na)⁺; вычислено: 288,0534.

1-(2-Дезокси-2-фтор-β-D-арабинофуранозил)-6-аминотимин (8). Выход 68 %, белый порошок, т. пл. 258–260 °С, R_f (Б) 0,23. Спектр УФ λ , нм (lg ε): pH 1, λ_{max} 279 (4,23); pH 7, λ_{max} 279 (4,23); pH 13, λ_{max} 279 (4,10). Спектр ¹Н ЯМР (DMSO-d₆): δ 10,68 с (1H, NH), 6,64 дд (1H, H1', *J* 6,1, *J* 16,5), 6,63 с (2H, NH₂), 5,88 д (1H, 3'OH, *J* 5,4), 5,49 т (1H, 5'OH, *J* 5,3), 5,07 ддд (1H, H2', *J* 3,7, *J* 5,9, *J* 54,9), 4,43 дм (1H, H3', *J* 26,3), 3,75–3,62 м (3H, H4', H5', H5''), 1,64 с (3H, CH₃). Спектр ¹³С ЯМР (CD₃OD): δ 164,9 (C4), 156,5 (C6), 151,5 (C2), 98,5 д (C2', *J* 195,2), 85,7 д (C1', *J* 17,8), 83,4 (C5), 83,1 д (C4', *J* 6,5), 74,9 д (C3', *J* 24,7), 59,4 (C5'), 8,1 (CH₃). Спектр ¹⁹F ЯМР (DMSO-d₆): δ –195,11 м (FC2'). Масс-спектр (HRMS), найдено: *m/z* 298,0827 (M+Na)⁺; вычислено: 298,0815.

1-(2-Дезокси-2-фтор-β-D-арабинофуранозил)-6-метокситимин (9). Выход 13 %, бесцветное масло, *R_f* (Б) 0,47. Спектр УФ λ, нм (lg ε): pH 1, λ_{max} 265 (3,95); pH 7, λ_{max} 265 (3,95); pH 13, λ_{max} 266

(3,87). Спектр ¹Н ЯМР (DMSO-d₆): δ 11,41 с (1H, HN), 6,35 т (1H, H1'), 5,73 д (1H, 3'OH, *J* 5,4), 5,78 т (1H, 5'OH, *J* 5,3), 5,18 дт (1H, H2', *J* 55,6), 4,31 дм (1H, H3', *J* 23,3), 3,86 с (3H, OCH₃), 3,68–3,54 м (3H, H4', H5', H5''), 1,77 с (3H, CH₃). Спектр ¹³С ЯМР (DMSO-d₆): δ 164,2 (C4), 159,5 (C6), 149,4 (C2), 96,8 д (C2', *J* 197,2), 95,3 (C5), 80,5 д (C4', *J* 9,8), 79,1 д (C1', *J* 16,2), 73,3 д (C3', *J* 20,8), 62,3 (OCH₃), 60,9 (C5'), 7,9 (CH₃). Спектр ¹⁹F ЯМР (DMSO-d₆): δ –199,87 м (FC2'). Масс-спектр (HRMS), найдено: *m/z* 291,0984 (M+Na)⁺; вычислено: 291,0992.

1-(2-Дезокси-2-фтор-\alpha-D-арабинофуранозил)-6-аминотимин (10). Выход 61 %, белый порошок, R_f (Б) 0,27. Спектр УФ λ , нм (lg ϵ): pH 1, λ_{max} 279 (4,23); pH 7, λ_{max} 279 (4,23); pH 13, λ_{max} 279 (4,10). Спектр ¹Н ЯМР (DMSO-d₆): δ 10,71 с (1H, NH), 6,43 с (2H, NH₂), 6,17 дд (1H, H1', *J* 4,7, *J* 20,1), 5,93 д (1H, 3'OH, *J* 5,2), 5,67 дт (1H, H2', *J* 57,0), 4,91 т (1H, 5'OH, *J* 5,5), 4,27 дм (1H, H3', *J* 23,1), 4,19 м (1H, H4'), 3,58 уш. д (1H, H5'), 3,46 дм (1H, H5'', *J* 5,0, *J* 12,1), 1,67 с (3H, CH₃). Спектр ¹³С ЯМР (DMSO-d₆): δ 162,4 (C4), 151,3 (C6), 150,2 (C2), 98,8 д (C2', *J* 181,5), 86,1 д (C1', *J* 38,4), 84,6 (C5), 82,1 с (C4'), 74,1 д (C3', *J* 22,4), 60,3 (C5'), 8,6 (CH₃). Спектр ¹⁹F ЯМР (DMSO-d₆): δ –188,47 м (FC2'). Массспектр (HRMS), найдено: *m/z* 298,0813 (M+Na)⁺; вычислено: 298,0815.

1-(2-Дезокси-2-фтор-\alpha-D-арабинофуранозил)-6-метокситимин (11). Выход 17 %, бесцветное масло, R_f (Б) 0,51. Спектр УФ λ , нм (lg ε): pH 1, λ_{max} 265 (3,95); pH 7, λ_{max} 265 (3,95); pH 13, λ_{max} 266 (3,87). Спектр ¹H ЯМР (DMSO-d₆): δ 11,44 с (1H, HN), 6,05 дд (1H, H1', *J* 4,9, *J* 19,7), 5,85 д (1H, 3'OH, *J* 5,5), 5,61 дт (1H, H2', *J* 57,8), 4,85 т (1H, 5'OH, *J* 6,1), 4,28 дм (1H, H3', *J* 24,9), 3,90 с (3H, OCH₃), 4,13 м (1H, H4'), 3,59 уш.д (1H, H5'), 3,43 м (1H, H5'', *J* 4,6, *J* 12,2), 1,78 с (3H, CH₃). Спектр ¹³С ЯМР (DMSO-d₆): δ 164,2 (C4), 158,3 (C6), 149,5 (C2), 99,2 д (C2', *J* 181,9), 96,4 (C5), 85,1 д (C1', *J* 38,9), 84,2 д (C4', *J* 8,2), 73,3 д (C3', *J* 21,8), 62,3 (OCH₃), 60,1 (C5'), 7,9 (CH₃). Спектр ¹⁹F ЯМР (DMSO-d₆): δ –190,44 м (FC2'). Масс-спектр (HRMS), найдено: *m/z* 291,0982 (M+Na)⁺; вычислено: 291,0992.

6,3'-Ангидро-1-(2-дезокси-2-фтор-α-D-арабинофуранозил)-6-гидрокситимин (12). Выход 89 %, белый порошок, т. пл. 228–230 °С (Et₂O), *R_f* (Б) 0,66. Спектр УФ λ, нм (lg ɛ): pH 1, λ_{max} 267 (4,11); pH 7, λ_{max} 267 (4,14); pH 13, λ_{max} 268 (4,03). Спектр ¹Н ЯМР (DMSO-d₆): δ 11,33 с (1H, NH), 6,34 д (1H, H1', *J* 6,6), 5,59 дд (1H, H2', *J* 49,9), 5,27 уш. д (1H, H3', *J* 4,0), 5,18 уш. с (1H, 5'OH), 4,33 т (1H, H4'), 3,51–3,41 м (2H, H5', H5''), 1,65 с (3H, CH₃). Спектр ¹³С ЯМР (DMSO-d₆): δ 163,5 (C4), 151,7 (C6), 147,7 (C2), 86,9 (C5), 86,8 д (C2', *J* 193,6), 85,3 (C4'), 80,4 д (C1', *J* 26,5), 76,5 д (C3', *J* 22,3), 59,8 (C5'), 6,9 (CH₃). Спектр ¹⁹F ЯМР (DMSO-d₆): δ –199,51 д (FC2'). Масс-спектр (HRMS), найдено: *m/z* 259,0721 (M+H)⁺; вычислено: 259,0730.

Заключение. Осуществлен синтез 2'-дезокси-2'-фтор-D-арабинофуранозил нуклеозидов 6-замещенного тимина и разработан метод синтеза 2'-дезокси-2'-фтор-β-D-арабинонуклеозида 6-фтортимина с целью изучения их биологической активности. Разработан подход к синтезу 6,3'-О-α-Dангидронуклеозидов путем реакции внутримолекулярной циклизации при деблокировании бензоильного производного 2'-фтор-α-D-арабинофуранозил-6-фтортимина в основных условиях.

Благодарности. Работа выполнена при финансовой поддержке Национальной академии наук Беларуси в рамках задания № 4.19 подпрограммы «Химфармсинтез».

Acknowledgement. This work was supported within the research project number 4.19 of ChemPharmSynthesis Program, National Academy of Sciences of Belarus.

Список использованных источников

1. Applications of Fluorine in Medicinal Chemistry / E. P. Gillis [et al.] // J. Med. Chem. – 2015. – Vol. 58, iss. 21. – P. 8315–8359. doi.org/10.1021/acs.jmedchem.5b00258.

2. Wójtowicz-Rajchel, H. Synthesis and applications of fluorinated nucleoside analogues / H. Wójtowicz-Rajchel // J. Fluorine Chem. - 2012. - Vol. 143. - P. 11-48. doi.org/10.1016/j.jfluchem.2012.06.026.

3. Begue, J.-P. Bioorganic and Medicinal Chemistry of Fluorine / J.-P. Begue, D. Bonnet-Delpon. – Hoboken, New Jersey: John Wiley & Sons, Inc., 2008. – 366 p.

4. Liu, P. Fluorinated Nucleosides: Synthesis and Biological Implication / P. Liu, A. Sharon, C. K. Chu // J. Fluorine Chem. - 2008. - Vol. 129, iss. 9. - P. 743-766. doi.org/10.1016/j.jfluchem.2008.06.007.

5. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases / L. P. Jordheim [et al.] // Nat. Rev. Drug Discov. - 2013. - Vol. 12, iss. 6. - P. 447-464. doi.org/10.1038/nrd4010.

6. Bärwolff, D. Glucosidierung des 6-Fluorthymins / D. Bärwolff, G. Kowollik, P. Langen // Collect. Czech. Chem. Commun. – 1974. – Vol. 39, iss. 6. – P. 1494–1499. doi.org/10.1135/cccc19741494.

7. Von Janta-Lipinski, M. Synthesis of 6-substituted thymine nucleosides / M. von Janta-Lipinski, P. Langen // Nucleic Acids Symposium Series. – 1981. – Vol. 9. – P. 41–44.

8. Synthesis of novel 6-substituted thymine ribonucleosides and their 3'-fluorinated analogues / T. S. Bozhok [et al.] // Tetrahedron. - 2016. - Vol. 72, iss. 41. - P. 6518-6527. doi.org/10.1016/j.tet.2016.08.065.

9. A stereospecific, total synthesis of 2'-fluoro-2'-deoxy-beta-D-arabinofuranosyl nucleosides / H. G. Howell [et al.] // J. Org. Chem. – 1988. – Vol. 53, iss. 1. – P. 85–88. doi.org/10.1021/jo00236a017.

10. Wilds, C. J. 2'-Deoxy-2'-fluoro-β-D-arabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies / C. J. Wilds, M. J. Damha // Nucl. Acids Research. – 2000. – Vol. 28, iss. 18. – P. 3625–3635. doi.org/10.1093/ nar/28.18.3625.

11. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)-5-iodouracil (.beta.-FIAU) and 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)thymine (.beta.-FMAU) / C. H. Tann [et al.] // J. Org. Chem. – 1985. – Vol. 50, iss. 19. – P. 3644–3647. doi.org/10.1021/jo00219a048.

12. Mieczkowski, A. Preparation of cyclonucleosides / A. Mieczkowski, V. Roy, L. A. Agrofoglio // Chem. Rev. – 2010. – Vol. 110, iss. 4. – P. 1828–1856. doi.org/10.1021/cr900329y.

13. Hsee, R. K. Through-space ¹³C⁻¹⁹F couplings in highly-crowded systems: Radial dependence and electronic effects / R. K. Hsee, D. J. Sardella // Magn. Reson. Chem. – 1990. – Vol. 28, iss. 8. – P. 688–692. doi.org/10.1002/mrc.1260280806.

References

1. Gillis E. P., Eastman K. J., Hill M. D., Donnelly D. J., Meanwell N. A. Applications of Fluorine in Medicinal Chemistry. *Journal of Medicinal Chemistry*, 2015, vol. 58, no. 21, pp. 8315–8359. doi.org/10.1021/acs.jmedchem.5b00258.

2. Wójtowicz-Rajchel H. Synthesis and applications of fluorinated nucleoside analogues. *Journal of Fluorine Chemistry*, 2012, vol. 143, pp. 11–48. doi.org/10.1016/j.jfluchem.2012.06.026.

3. Begue J.-P., Bonnet-Delpon D. *Bioorganic and Medicinal Chemistry of Fluorine*. Hoboken, New Jersey, John Wiley & Sons, Inc., 2008. 366 p.

4. Liu P., Sharon A., Chu C. K. Fluorinated Nucleosides: Synthesis and Biological Implication. *Journal of Fluorine Chemistry*, 2008, vol. 129, no. 9, pp. 743–766. doi.org/10.1016/j.jfluchem.2008.06.007.

 Jordheim L. P., Durantel D., Zoulim F., Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. *Nature Reviews Drug Discovery*, 2013, vol. 12, no. 6, pp. 447–464. doi.org/10.1038/nrd4010.
Bärwolff D., Kowollik G., Langen P. Glucosidierung des 6-Fluorthymins. *Collection of Czechoslovak Chemical*

Communications, 1974, vol. 39, no. 6, pp. 1494–1499. doi.org/10.1135/cccc19741494.

7. Von Janta-Lipinski M., Langen P. Synthesis of 6-substituted thymine nucleosides. *Nucleic Acids Symposium Series*, 1981, vol. 9, pp. 41-44.

8. Bozhok T. S., Sivets G. G., Baranovsky A. V., Kalinichenko E. N. Synthesis of novel 6-substituted thymine ribonucleosides and their 3'-fluorinated analogues. *Tetrahedron*, 2016, vol. 72, no. 41, pp. 6518–6527. doi.org/10.1016/j. tet.2016.08.065.

9. Howell H. G., Brodfuehrer P. R., Brundidge S. P., Benigni D. A., Sapino C. Antiviral nucleosides. A stereospecific, total synthesis of 2'-fluoro-2'-deoxy-.beta.-D-arabinofuranosyl nucleosides. *The Journal of Organic Chemistry*, 1988, vol. 53, no. 1, pp. 85–88. doi.org/10.1021/jo00236a017.

10. Wilds C. J., Damha M. J. 2'-Deoxy-2'-fluoro-β-D-arabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. *Nucleic Acids Research*, 2000, vol. 28, no. 18, pp. 3625–3635. doi.org/10.1093/nar/28.18.3625.

11. Tann C. H., Brodfuehrer P. R., Brundidge S. P., Sapino C., Howell H. G. Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)-5-iodouracil (.beta.-FIAU) and 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)thymine (.beta.-FMAU). *The Journal of Organic Chemistry*, 1985, vol. 50, no. 19, pp. 3644–3647. doi. org/10.1021/jo00219a048.

12. Mieczkowski A., Roy V., Agrofoglio L. A. Preparation of cyclonucleosides. *Chemical Reviews*, 2010, vol. 110, no. 4, pp. 1828–1856. doi.org/10.1021/cr900329y.

13. Hsee R. K., Sardella D. J. Through-space ¹³C-¹⁹F couplings in highly-crowded systems: Radial dependence and electronic effects. *Magnetic Resonance in Chemistry*, 1990, vol. 28, no. 8, pp. 688–692. doi.org/10.1002/mrc.1260280806.

Информация об авторах

Божок Татьяна Станиславовна – науч. сотрудник, Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: tboshok@tut.by.

Калиниченко Елена Николаевна – член-корреспондент, д-р хим. наук, заместитель директора, Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: kalinichenko@iboch.bas-net.by.

Для цитирования

Божок, Т. С. Синтез 2'-дезокси-2'-фтор-D-арабинонуклеозидов 6-замещенного тимина / Т. С. Божок, Е. Н. Калиниченко // Докл. Нац. акад. наук Беларуси. – 2017. – Т. 61, № 1. – С. 61–67.

Information about the authors

Bozhok Tatiana Stanislavovna – Researcher, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: tboshok@tut.by.

Kalinichenko Elena Nikolaevna – Corresponding Member, D. Sc. (Chemistry), Deputy Director, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: kalinichenko@iboch.bas-net.by.

For citation

Bozhok T. S., Kalinichenko E. N. Synthesis of 6-substituted thymine 2'-deoxy-2'-fluoro-D-arabinofuranosyl nucleosides. *Doklady Natsional'noi akademii nauk Belarusi* [Doklady of the National Academy of Sciences of Belarus], 2017, vol. 61, no. 1, pp. 61–67. (in Russian)