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The liquid capture by a moving surface is the most widespread process in chemical engineering along with calendaring, 
extrusion moulding, pouring, and pressure moulding. The theoretical analysis of the medium capture by a moving surface, 
which allows revealing the fundamental physical principles and mechanisms of the process over the entire withdrawal speed 
range realized in practice, was performed for Newtonian, non-Newtonian, and viscoplastic liquids. However, such an analysis 
of the withdrawal of viscoplastic liquids with a finite yield was not made because of the features of these liquids. Shear flow of 
viscoplastic liquid is possible only after the stress exceeds its yield. This fact causes serious mathematical difficulties in stating 
and solving the problem. In the proposed work, such a theory is being developed for viscoplastic liquids.
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УВЛЕЧЕНИЕ ВЯЗКОПЛАСТИЧЕСКОЙ ЖИДКОСТИ ДВИЖУЩЕЙСЯ ВЕРТИКАЛЬНО ПЛАСТИНОЙ

(Представлено академиком О. Г. Пенязьковым)

Захват жидкости движущейся поверхностью является наиболее распространённым процессом в химической техно-
логии наряду с каландрованием, экструзионным формованием, заливкой, формованием под давлением. Теоретический 
анализ увлечения среды движущейся поверхностью, позволяющей вскрыть основные физические принципы и меха-
низмы процесса во всем диапазоне скоростей извлечения, реализуемом на практике, был проведен для ньютоновских, 
нелинейновязких, вязкопластичных жидкостей. Однако такой анализ по увлечению вязкопластичных жидкостей, об-
ладающих конечным пределом текучести, проведен не был в силу специфических особенностей этих жидкостей. Для 
вязкопластичной жидкости сдвиговое течение возможно лишь после того как напряжение превысит предел текучести. 
Данное обстоятельство вносит серьезные математические трудности при постановке и решении задачи. В предлагаемой 
работе такая теория развивается для вязкопластичных жидкостей.

Ключевые слова: вязкопластические жидкости, скорость извлечения жидкости, ширина слоя жидкости, статические  
и динамические мениски.

Introduction. As one of the continuous established technologies of moulding and processing 
materials the process of capturing liquid by a moving surface is the most widespread process in chemical 
engineering along with calendaring, extrusion moulding, pouring, and pressure moulding. Determination 
of the thickness of the film deposited on the surface of paper, polymer, metal, and fabric withdrawn from 
a solution is of substantial significance for such technological processes as:

а) application of different coatings – protective, decorative, special (light- and magnet-sensitive, 
electrically insulated, clay, release, abrasion, anti-friction, etc.);

b) drying in contact roller machines (rotating heated drum capture of a medium film with its subsequent 
drying); 
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c) crystallization in knife-discharge drum crystallizers (a solidified layer thickness is determined 
through the capture of a melt film by the drum surface);

d) dispersion by submerged mechanical sprayers (the rotating discs partially submerged into liquid 
withdrawn in the form of a film, followed by its dispersion);

e) filtration in drum and disc vacuum-filters, etc.
The works [1–3] were concerned with the theoretical analysis of capture of a medium by a moving 

surface. It allowed one to uncover the basic physical principles and the mechanisms of the capture process 
over the entire range of the withdrawal speed realized in practice and at a different rheological state of 
liquid (Newtonian, non-Newtonian, viscoelastic).

However, such an analysis of the capture of viscoplatic liquids with a finite yield was not made 
because of the features of these liquids that are different from those of Newtonian and non-plastic non-
Newtonian media. Shear flow of the viscoplastic liquid is possible only after the film stress exceeds its 
yield. This fact causes serious mathematical difficulties in stating and solving the problem.

Problem statement. To describe the rheological behavior of a viscoplastic medium, Shvedov–
Bingham’s linear model for viscous shear stress has found widest use [4]

 
0 0

0

sign , ,

0, .

P
du du
dy dy

du
dy

τ = τ + m τ > τ

= τ ≤ τ
 (1)

Here u is the liquid velocity, τ0 is the ultimate shear stress (yield), and mP is the plastic viscosity. 
Writing (1) stands for the demand of the same signs of τ and /du dy that follows from the essence of the 
phenomenon considered.

Consider the liquid being into the bath, from which an infinite plate is withdrawn vertically upwards 
with a constant speed U (Fig. 1). The thickness of the layer captured by the plate wall decreases with 
increasing distance from the horizontal liquid surface and asymptotically tends to a constant value of h0. 
Because of the gravity, this plate captures only some amount of the liquid put in motion by it. Therefore, 
the stagnation line hS is seen in the direction to the free surface where the layer velocity is equal to zero. 
As a result, the speed of moving the free surface of the film captured by the plate increases from zero in 
the stagnation line to its maximum value in the region of the constant film thickness h0. The stagnation 
line separates the near-wall zone of the liquid captured by the plate from the bath zone. For these zones 
the equations responsible for the shape of the free surface can be obtained and the solutions can then be 
joined. This will allow the thickness of the entrained film to be determined.

Let the stagnation line be the coordinate origin, the х 
axis be in the direction of movement of the plate and the у 
axis be perpendicular to it. Define the region of dynamic 
meniscus of liquid as the flow area bounded from below by 
the plane perpendicular to the wall and passing through the 
stagnation line and from above moving into the region of 
the constant thickness h0. In this region the film thickness h 
is determined by the ratio of internal friction forces, surface 
tension, gravity, and inertia. From the physical considera-
tions it is clear that the characteristic dynamic meniscus 
length L much exceeds the film thickness h0. Then the small 
parameter ε = h0 / L << 1 arises quite naturally. This means 
that the change in the flow characteristics along the x axis is 
weaker than in the transverse y direction, i. e., the derivatives 
with respect to the y axis will be much larger than those 
with respect to the x axis.

As a result of the dynamic meniscus of the non-Newtonian 
liquid, correct to the terms of the order of ε2, we obtainFig. 1. Viscoplastic liquid flow scheme



 Doklady of the National Academy of Sciences of Belarus. 2017. Vol. 61, no. 1, pp. 95–101 97

 00, = ( = ),

( 0), 0 ( = ).

g h p p h y h
y

u U y y h

∂τ
− ρ + s = − −s

∂
= = τ =

 

 (2)

Hereinafter, the following notations are taken: / ,h dh dx=  2 2/ ,h d h dx=  3 3/ .h d h dx=  Due to a high 
consistency of non-Newtonian media, the inertia terms can be ignored. Present the equation of continuity 
in integral form

 
0

const.
h

Q udy= =∫  (3)

Integrating equation of motion (2) with the boundary condition satisfied yields

 ( ) ( )( ).y g h h yτ = − ρ − s −

Choose the rheological equation for the viscoplastic liquid in the form of Shvedov–Bingham’s classical 
model (1). Considering that / 0du dy <  for the shear flow region we have

 0 ( )( ).P
u g h h y
y

∂
−τ + m = − ρ − s −

∂
  (4)

As equation (4) shows, across the film the shear stress changes continuously and linearly, starting with a 
maximum value at the plate wall to a zero value at the free surface. At some value of the ordinate y = d, 
the magnitude τ = τ0 can be attained. Bearing in mind the second condition of rheological equation of state 
(1) and equation (4) we obtain

 0 ( )( ).g h hτ = ρ − s − d

Hence, for the viscoplastic liquid flow zone τ > τ0 (0 ≤ y < d)

 0 / ( )h g hd = − τ ρ − s  (5)

and for the liquid flow quasi-solid zone  τ ≤ τ0 (d ≤ y ≤ h)

 0 / ( ).h g h∆ = − d = τ ρ − s  (6)

Integrating equation (4) with respect to y yields the velocity distribution across the film in the 
viscoplastic liquid flow zone

 
2

0 1 ( ) .
2P P

yu U y g h hy
 τ

= + − ρ − s −  m m  
  (7)

In turn, for the velocity of the liquid flow quasi-solid zone the substitution of equation (7) at y = d into 
expression (5) arrives at:

 
2

0 0
0 ( ) / ( ).

2 2P P P

hu U h g h g hτ τ
= + − ρ − s − ρ − s

m m m
   (8)

Define the liquid flow velocity in the film using formula (3):

 
2 3 3

0 0 2( ) / ( ) .
2 3 6P P P

h hQ Uh g h g hτ τ
= + − ρ − s − ρ − s

m m m
   (9)

The last equation is valid over the range of the film thickness h(x) from h0 to hS.
Find the position of the stagnation line hS, assuming that u0 = 0 and h = hS in expressions (8) and (9). 

Then

 033 1 .
2S

P

Q Qh
U U U

 τ
= + m 

 (10)
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Equation (9) assigns the film thickness h(х) through the predetermined quantities U, ρ, g, s, mP, 
τ0. Since the general solution to this nonlinear differential equation cannot be obtained, consider some 
particular cases. To do this, equation (9) with regard to formulas (5) and (6) is written in equivalent form:

 
2 3 3

0 0
3

1 / 3 3; 1 .
2 1 / 3 2 2P P

h hQ Uh Q Uh
h h h

 τ d − d τ ∆ ∆ = − = − − +    m − d m ∆   
 (11)

The thickness of the quasi-solid movement zone is much larger than that of the viscoplastic 
movement zone. Let the condition d / h << 1 be satisfied in the first equation of (11), i. e., the quasi-solid 
movement zone thickness ∆ is much larger than the shear viscoplastic liquid zone thickness d. Then the 
main role in this equation will be played by the plastic factor τ0. As limiting cases, the rheological equation 
of state of viscoplastic liquid (1) indeed contains the equations of state of perfectly viscous liquid τ0 = 0 
and perfectly plastic substance 0.P

du
dy

m =  It is natural that depending on the relation between τ0 and 

0,P
du
dy

m =  the properties of viscoplastic liquid will approach those either of viscous liquid or of perfectly 

plastic substance.
Below there is the condition, under which the requirement d / h << 1 is satisfied, and while in the first 

equation of (11) the term d / h will be neglected in comparison to unity. Then

 
0

2 1 .P QUh
Uh

m  d = − τ  

Substituting this formula into equation (5) gives

 
1

0

0

21 1 1 .PU Qh
g gh h Uh

−
 s τ m  = − − −  ρ ρ τ    

  (12)

For the region of the constant film thickness, when h = h0, all derivatives with respect to the х 
coordinate are equal to zero. As a result,

 
2

0 0 0

0
1 1 ,

2 P

Q h
Uh U gh

 τ τ
= − − m ρ 

 (13)

and upon reduction to dimensionless variables

 0
0

0 0
, , , ,Px h U gH Ca D h B

h h g
m ρ τ

ξ = = = = =
s s ρ s

 (14)

equation (12) assumes the form

 ( )
13

22
3

2 ( 1) 1 / .d H CaD BD H H B D
BDd

−
 

= − − − + − 
ξ  

 (15)

The ultimate value of the film thickness h0 is attained asymptotically at a sufficiently large value of 

the х coordinate. To sufficient accuracy, it can be assumed that 
2

21, 0, 0dH d HH
d d

→ → →
ξ ξ

 as .ξ → ∞  

Equation (15) contains one more unknown magnitude D (or h0 in dimensionless form) related to the liquid 
flow velocity by expression (13). To calculate it, it is necessary to find the shape of the liquid surface 
below the stagnation line and then to fit it to the shape of the dynamic meniscus in the stagnation line. The 
condition to fit the shapes will be that missing condition that will allow h0 to be calculated.

Now consider the liquid surface extending to the right of the stagnation line. By assumption, this 
surface obeys the equations of capillary statics, in particular the Laplace equation:

 
3/222

0 2
11

1 .d h dhp p
dxdx

−
  − = −s  +  

   
 (16)
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Here the х1 axis coincides with the х axis, but 
taken from the horizontal surface of the liquid 
poured into the bath (Fig. 1). Call the zone below 
the stagnation line the region of the static meniscus 
of the liquid.

It is obvious that in the stagnation line, the 
liquid pressure determined on the side of both the 
dynamic and static regions must be the same. Then, 
following from equations (2) and (16) the condition 
to join the solutions for the dynamic and static 
regions can be found:

3/222 2

2 2
11

1d h d h dhh
dxdx dx

−
  = =  +  

   

  at h = hS.  (17)

The position of the stagnation line hS is calculated 
by substituting expression (13) into formula (10).

The calculation results (Fig. 2) demonstrate that there exists some dimensionless withdrawal speed, 
,Ca∗  of the plate, at which the dimensionless film thickness D becomes equal to the plastic factor В and 

the entrained film thickness 0
0h

g
τ

=
ρ

 does not depend on surface tension.

The case of no viscoplastic movement zone. Consider the case when the dimensionless withdrawal 
speed Ca is smaller than .Ca∗  Then the viscoplastic flow region is absent, i. e., d = 0, and the equation 
for the dynamic meniscus of the liquid will be of the form

 01 .h
g gh

s τ
= −

ρ ρ
  (18)

In this case, the dynamic meniscus (Fig. 3) can be divided into two zones – upper А with no plastic 
deformation and – lower С with plastic deformation. When liquid deformation is absent in zone А, 
the liquid layer moves in it as a single whole with the plate moving upwards with the latter. In view 
of this, from the condition of the constant liquid flow rate constQ =  and the constant liquid velocity 

const =u U=  we have that the thickness of the liquid layer at any point of zone А is the same and equal 
to 0 / const.h Q U= =  Thus, in zone А the film thickness is constant, whereas in the previous considered 
case it has tended asymptotically to a constant value.

It is obvious that at boundary F of zones А and С, the 
conditions 0 ,A Ch h h= =  0,A Ch h= =   and 0A Ch h= =   are 
valid. The last condition follows from the requirement of 
pressure continuity in the layer.

As for the definition of the liquid surface shape in zone 
С and the condition to join this shape and the static meniscus 
shape, the following should be emphasized. The film thickness 
h in equation (18) obviously changes from a minimum value 
of h0 at point F of zone С to a maximum value equal to 

0
max .Sh h

g
τ

= =
ρ

 Here 0
0 ,h

g
τ

<
ρ

 since in the opposite case 

the value of the derivative of h at point F will be positive.  
A maximum value of the film thickness maxh  separates the zone 
of the dynamic meniscus from the static one, i. e., in fact, it 
is the stagnation line. The above method of joining the two 
menisci then remains valid.

In dimensionless variables (14), the equation of the dynamic 
meniscus and the position of the stagnation line are of the form

Fig. 2. Withdrawal velocity Ca vs. film width D at D → B

Fig. 3. Flow scheme for the case of no 
viscoplastic flow zone
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3
2

3 ,d H BDD
Hd

= −
ξ

 / .SH B D=

Hence it follows that the entrained liquid film 
thickness h0 does not depend on the withdrawal 
speed, Са, of the plate. The calculation results in 
Fig. 4 confirm this fact.

The thickness of the quasi-solid flow zone is 
commensurable with the viscoplastic flow zone 
thickness. Assume that in the second equation of 

(11) the condition 
3

3
31
2 2h h
∆ ∆

− >>  is satisfied, then 

neglecting the term 
3

3 ,
2h
∆  for the liquid flow rate 

in the film we have:
 3

0 31 .
3 2P

hQ Uh
h

τ ∆ = − − m ∆  
            (19)

To find the condition for feasibility of equation (19), it is assumed that 
3

3
31 10 .
2 2h h
∆ ∆

− ≥  This means that 
1 .
2h

∆
<  Thus, equation (19) is valid for quite a common case when the thickness of the quasi-solid flow 

zone is of the same order as the thickness of the viscoplastic flow zone. Having used formula (6), reduce 
equation (19) to the form

 0 2 3 3 .
2 3 3P P P

gQ Uh h h h hτ ρ s
= + − +

m m m
  (20)

The withdrawn layer thickness h enough tends asymptotically to a constant value of h0 at a sufficiently 
large distance from the liquid surface in the bath (as x → ∞) (Fig. 1). At a time, all derivatives of h with 
respect х tend to zero. Substitution of the appropriate quantities into equation (20) yields

 0 2 3
0 0 0 .

2 3P P

gQ Uh h hτ ρ
= + −

m m
 (21)

Combining equalities (20) and (21), and also using the dimensionless variables (14), for the dynamic 
meniscus we have

3 3

3

2
2

(1 ) 1 (1 )
3 2

(1 ) .
3

H d H BDH H
Ca Cad

D H H
Ca

= − + + −ξ


+ + 



    (22)

As previously, to solve the problem stated – to 
determine the layer thickness h0 – it is necessary 
to use condition (17) of joining the solutions for 
the dynamic and static menisci in the stagnation 
line hS. The position of the latter is found by 
substituting expression (21) into formula (10). 
The calculation results are shown in Fig. 5. It 
should be noted that in deriving equation (22) it 

was assumed that 1 .
2h

∆
<  For sufficiently large 

Fig. 4. Film width D vs. plastic factor B for the case of no 
viscoplastic flow zone

Fig. 5. Reaching the asymptotic value of /D Ca  at increase in 
the withdrawal speed Ca and at different values of the plastic 

factor B
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distances from the static meniscus this condition is re-written as 0

0

1
2h

∆
<  where 0

0 g
τ

∆ =
ρ

 according 

to formula (6). The reduction of the obtained condition to the dimensionless form through D and B is 
indicative of the fact that equation (22) can be used for the case when 2B < D. From Fig. 5 it is seen that 
at sufficiently large withdrawal speed, Ca, of the plate, the film thickness becomes independent of surface 
tension and is assigned only by friction and gravity forces.
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