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The liquid capture by a moving surface is the most widespread process in chemical engineering along with calendaring,
extrusion moulding, pouring, and pressure moulding. The theoretical analysis of the medium capture by a moving surface,
which allows revealing the fundamental physical principles and mechanisms of the process over the entire withdrawal speed
range realized in practice, was performed for Newtonian, non-Newtonian, and viscoplastic liquids. However, such an analysis
of the withdrawal of viscoplastic liquids with a finite yield was not made because of the features of these liquids. Shear flow of
viscoplastic liquid is possible only after the stress exceeds its yield. This fact causes serious mathematical difficulties in stating
and solving the problem. In the proposed work, such a theory is being developed for viscoplastic liquids.
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Hucmumym menno- u maccooomena um. A. Y. Jleikosa HAH benapycu, Munck, Pecnybnuka beaapyce
VBJIEYEHUE BSI3KOIIJIACTHYECKOM KU JIKOCTH JIBAKYIIENCS BEPTUKAJBHO IIJIACTUHOI
(Ilpeocmasneno axademuxom O. I [lensazvroavim)

3axBaT JKHIKOCTH ABIKYIIEHCS TOBEPXHOCTBHIO SIBIIETCS HaHOOJIee pacpOCTPaHEHHBIM MPOIECCOM B XUMHUECKOH TEXHO-
JIOTUH HapsIy C KaJaHIPOBAaHHUEM, SKCTPY3HOHHBIM (hopMOBaHMEM, 3aIMBKOH, (HOPMOBAHMEM TOJ TaBICHHEM. TeopeTHIecKuii
AHAJIN3 YBICUCHUSI CPEJIbI IBIDKYIIEHCS MOBEPXHOCTHIO, MO3BOJSIONIEH BCKPHITh OCHOBHBIE (DM3WUIECKUE MPHHIUIBI H MeXa-
HI3MBI IIpOIlecca BO BCEM AMana3oHe CKOPOCTeH M3BICUEHMS, Pealli3yeMOM Ha NPAKTHKE, OBUT MPOBECH ISl HBIOTOHOBCKHX,
HEJTMHEWHOBSI3KHX, BSI3KOIIACTUYHBIX JKUAKOCTeH. OMHAKO TAaKOH aHAIHW3 MO YBICUSHHUIO BA3KOIUIACTHYHBIX XKUAKOCTEH, 00-
JaAI0MUX KOHEYHBIM TPEAENIOM TeKydeCTH, MPOBEICH He ObIT B CHITy CIIEIU(PUIECKIX 0COOCHHOCTEH STHX JKHAKOCTeH. Jlims
BSI3KOITACTUYHOH JKUIKOCTH CABHIOBOE TEUEHHE BO3MOXKHO JIUIIH ITOCTIE TOTO KaK HANPSUKEHUE MPEBBICUT MPEAENT TEeKydeCTH.
JlaHHOE 00CTOATETHCTBO BHOCHT CEPhE3HBIC MaTEMAaTHIECKUE TPYAHOCTH IIPY MOCTAHOBKE M peIIeHNH 3a1adn. B mpennaraemoit
paboTe Takast TEOPHs Pa3BUBACTCS AT BI3KOIIACTUYHBIX JKHIKOCTEH.

Kniouesvle cnosa: BA3KOIIIACTHIECKUE KUIKOCTH, CKOPOCTh N3BICUCHUS JKUIKOCTH, IIMPHUHA CIIOS )KUIKOCTH, CTATHIECKHE
U TUHAMHYECKHE MEHUCKH.

Introduction. As one of the continuous established technologies of moulding and processing
materials the process of capturing liquid by a moving surface is the most widespread process in chemical
engineering along with calendaring, extrusion moulding, pouring, and pressure moulding. Determination
of the thickness of the film deposited on the surface of paper, polymer, metal, and fabric withdrawn from
a solution is of substantial significance for such technological processes as:

a) application of different coatings — protective, decorative, special (light- and magnet-sensitive,
electrically insulated, clay, release, abrasion, anti-friction, etc.);

b) drying in contact roller machines (rotating heated drum capture of a medium film with its subsequent
drying);
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c) crystallization in knife-discharge drum crystallizers (a solidified layer thickness is determined
through the capture of a melt film by the drum surface);

d) dispersion by submerged mechanical sprayers (the rotating discs partially submerged into liquid
withdrawn in the form of a film, followed by its dispersion);

e) filtration in drum and disc vacuum-filters, etc.

The works [1-3] were concerned with the theoretical analysis of capture of a medium by a moving
surface. It allowed one to uncover the basic physical principles and the mechanisms of the capture process
over the entire range of the withdrawal speed realized in practice and at a different rheological state of
liquid (Newtonian, non-Newtonian, viscoelastic).

However, such an analysis of the capture of viscoplatic liquids with a finite yield was not made
because of the features of these liquids that are different from those of Newtonian and non-plastic non-
Newtonian media. Shear flow of the viscoplastic liquid is possible only after the film stress exceeds its
yield. This fact causes serious mathematical difficulties in stating and solving the problem.

Problem statement. To describe the rheological behavior of a viscoplastic medium, Shvedov—
Bingham’s linear model for viscous shear stress has found widest use [4]

T=T Sign—+ Wp— |'C| >7T
0 Vy P y ) 05 (1)
du

& 0, |T|S To.

Here u is the liquid velocity, 7, is the ultimate shear stress (yield), and p,is the plastic viscosity.
Writing (1) stands for the demand of the same signs of t and du / dy that follows from the essence of the
phenomenon considered.

Consider the liquid being into the bath, from which an infinite plate is withdrawn vertically upwards
with a constant speed U (Fig. 1). The thickness of the layer captured by the plate wall decreases with
increasing distance from the horizontal liquid surface and asymptotically tends to a constant value of 4.
Because of the gravity, this plate captures only some amount of the liquid put in motion by it. Therefore,
the stagnation line /s seen in the direction to the free surface where the layer velocity is equal to zero.
As a result, the speed of moving the free surface of the film captured by the plate increases from zero in
the stagnation line to its maximum value in the region of the constant film thickness %. The stagnation
line separates the near-wall zone of the liquid captured by the plate from the bath zone. For these zones
the equations responsible for the shape of the free surface can be obtained and the solutions can then be
joined. This will allow the thickness of the entrained film to be determined.

Let the stagnation line be the coordinate origin, the x
axis be in the direction of movement of the plate and the y
axis be perpendicular to it. Define the region of dynamic
meniscus of liquid as the flow area bounded from below by
the plane perpendicular to the wall and passing through the
stagnation line and from above moving into the region of
the constant thickness /. In this region the film thickness /
is determined by the ratio of internal friction forces, surface
tension, gravity, and inertia. From the physical considera-
tions it is clear that the characteristic dynamic meniscus
length L much exceeds the film thickness /. Then the small
parameter € = i/ L << 1 arises quite naturally. This means
that the change in the flow characteristics along the x axis is
weaker than in the transverse y direction, i. e., the derivatives
with respect to the y axis will be much larger than those
with respect to the x axis.

As a result of the dynamic meniscus of the non-Newtonian
Fig. 1. Viscoplastic liquid flow scheme liquid, correct to the terms of the order of &2, we obtain

h,
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ot . ..
—-—pg+ch=0, p—po=-ch (y=h),
oy ()]

u=U(y=0), t=0(y=h).
Hereinafter, the following notations are taken: h=dh/dx, h=d?*h/dx*, K =d>h/dx>. Due to a high

consistency of non-Newtonian media, the inertia terms can be ignored. Present the equation of continuity

in integral form
h
0= J' udy = const. 3)
0

Integrating equation of motion (2) with the boundary condition satisfied yields

1(y)=—(pg —ch)(h—y).

Choose the rheological equation for the viscoplastic liquid in the form of Shvedov—Bingham’s classical
model (1). Considering that du / dy < 0 for the shear flow region we have

- up% — —(pg—h)h ). @

As equation (4) shows, across the film the shear stress changes continuously and linearly, starting with a
maximum value at the plate wall to a zero value at the free surface. At some value of the ordinate y = 9,
the magnitude t = 7 can be attained. Bearing in mind the second condition of rheological equation of state
(1) and equation (4) we obtain

to = (pg —oh)(h—3).
Hence, for the viscoplastic liquid flow zone t > 1, (0 <y <)
S=h-1o/(pg—oh) )
and for the liquid flow quasi-solid zone t <71 (8 <y <h)
A=h-8=1¢/(pg —och). ©)

Integrating equation (4) with respect to y yields the velocity distribution across the film in the
viscoplastic liquid flow zone

2
u=U+T—°y—L(pg—07i')£hy—y—]- 7
up- Hp 2

In turn, for the velocity of the liquid flow quasi-solid zone the substitution of equation (7) at y = § into
expression (5) arrives at:
2

’E h “es "E “es
uo =U+—=h-——(pg —ch)~———/(pg ~oh). ®
wp  2pup 2pp
Define the liquid flow velocity in the film using formula (3):
toh? B T2
Q=Uh+——~——(pg —ch)~——/(pg —oh)’. ©)
2up 3up 6L p

The last equation is valid over the range of the film thickness /(x) from 4 to A,
Find the position of the stagnation line 4, assuming that u; = 0 and & = A in expressions (8) and (9).

Then
g =32[143€ T | (10)
Ul 2UppU
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Equation (9) assigns the film thickness A(x) through the predetermined quantities U, p, g, ©, W,
T, Since the general solution to this nonlinear differential equation cannot be obtained, consider some
particular cases. To do this, equation (9) with regard to formulas (5) and (6) is written in equivalent form:

2 _ 3 3
QZUh—TOB (1 8/3}1)’ Q:Uh_’toh 1— 3A A (11)

The thickness of the quasi-solid movement zone is much larger than that of the viscoplastic
movement zone. Let the condition 8 / 4 << 1 be satisfied in the first equation of (11), i. e., the quasi-solid
movement zone thickness A is much larger than the shear viscoplastic liquid zone thickness o. Then the
main role in this equation will be played by the plastic factor 7. As limiting cases, the rheological equation
of state of viscoplastic liquid (1) indeed contains the equations of state of perfectly viscous liquid t, = 0

and perfectly plastic substance p pd—u =0. It is natural that depending on the relation between 1, and
'y

np % =0, the properties of viscoplastic liquid will approach those either of viscous liquid or of perfectly

plastic substance.
Below there is the condition, under which the requirement 6 / 4 << 1 is satisfied, and while in the first
equation of (11) the term & / & will be neglected in comparison to unity. Then

5= \/2HPUh( Qj
To Uh

Substituting this formula into equation (5) gives

-1
S h=1-201- 2“PU(1—QJ . (12)
Pg pgh Toh Uh

For the region of the constant film thickness, when 4 = A, all derivatives with respect to the x
coordinate are equal to zero. As a result,

2
Q oy T | (13)
Uh 2upU\ pgho

and upon reduction to dimensionless variables

foX gl cg=URe pop, [P

h() h() (o) A I (14)

equation (12) assumes the form

N -1
”“:I 2_ \/&(H )+(1-B/D)* | . (15)
dg

The ultimate value of the film thickness 4 is attained asymptotically at a sufficiently large value of

. . . dH d*H
the x coordinate. To sufficient accuracy, it can be assumed that H —>1,— — 0, d—2 —>0as £ —> .

Equation (15) contains one more unknown magnitude D (or /in dimensionless form) related to the liquid
flow velocity by expression (13). To calculate it, it is necessary to find the shape of the liquid surface
below the stagnation line and then to fit it to the shape of the dynamic meniscus in the stagnation line. The
condition to fit the shapes will be that missing condition that will allow % to be calculated.

Now consider the liquid surface extending to the right of the stagnation line. By assumption, this
surface obeys the equations of capillary statics, in particular the Laplace equation:

d’h dh 27
—pp=—0C——| 1+ =— . 16
p=po ° dx12 [ (dxlj } (&)
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Here the x, axis coincides with the x axis, but  Cap
taken from the horizontal surface of the liquid [y}
poured into the bath (Fig. 1). Call the zone below g
the stagnation line the region of the static meniscus
of the liquid.

It is obvious that in the stagnation line, the
liquid pressure determined on the side of both the _
dynamic and static regions must be the same. Then, - W - analytical calculation at D — B

. . .. - fiting curve
3
following from equations (2) and (16) the condition 107 Ca = 0.766875°4+0.0131843 36*10°

to join the solutions for the dynamic and static P
regions can be found:
5 ’ ) —-3/2 10-4 N 1 s 1 N 1 s 1 n | |
.. 0 0.1 02 0.3 0.4 05 D
hzﬁLg:€L§1+(£@J ath=h. (17)
dx”  dxi dx

Fig. 2. Withdrawal velocity Ca vs. film width D at D — B
The position of the stagnation line 4 is calculated
by substituting expression (13) into formula (10).
The calculation results (Fig. 2) demonstrate that there exists some dimensionless withdrawal speed,
Ca”, of the plate, at which the dimensionless film thickness D becomes equal to the plastic factor B and

. . T .
the entrained film thickness g =—~ does not depend on surface tension.

pg
The case of no viscoplastic movement zone. Consider the case when the dimensionless withdrawal
speed Ca is smaller than Ca”. Then the viscoplastic flow region is absent, i. e., 8 = 0, and the equation
for the dynamic meniscus of the liquid will be of the form
O p=1-20 (18)
pg pgh

In this case, the dynamic meniscus (Fig. 3) can be divided into two zones — upper 4 with no plastic
deformation and — lower C with plastic deformation. When liquid deformation is absent in zone A,
the liquid layer moves in it as a single whole with the plate moving upwards with the latter. In view
of this, from the condition of the constant liquid flow rate Q =const and the constant liquid velocity
u =const =U we have that the thickness of the liquid layer at any point of zone 4 is the same and equal
to g =Q /U =const. Thus, in zone A the film thickness is constant, whereas in the previous considered
case it has tended asymptotically to a constant value.

It is obvious that at boundary F of zones 4 and C, the
conditions hy=hc=hy, hy=hc=0, and hy=hc =0 are
valid. The last condition follows from the requirement of
pressure continuity in the layer.

As for the definition of the liquid surface shape in zone
C and the condition to join this shape and the static meniscus
shape, the following should be emphasized. The film thickness
h in equation (18) obviously changes from a minimum value
of h, at point F' of zone C to a maximum value equal to

hmax = hs =T—0. Here &y <T—0, since in the opposite case
pPg pg

the value of the derivative of 4 at point F will be positive.
A maximum value of the film thickness A,,x separates the zone
of the dynamic meniscus from the static one, i. e., in fact, it
is the stagnation line. The above method of joining the two
menisci then remains valid.

In dimensionless variables (14), the equation of the dynamic Fig. 3. Flow scheme for the case of no
meniscus and the position of the stagnation line are of the form viscoplastic flow zone
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D g 3
: d°H BD
g - =D*-== H¢=B/D.
dg H
-1 - . . . .
10 Hence it follows that the entrained liquid film
thickness /1, does not depend on the withdrawal
5 speed, Ca, of the plate. The calculation results in
107 B - analytical calculation Fig. 4 confirm this fact.
- fiting curve , The thickness of the quasi-solid flow zone is
D = -0.415B*+0.9967B+0.1998B-0.005 . . .
10 L commensurable with the viscoplastic flow zone
i thickness. Assume that in the second equation of
- 3
i o 3 A . .
(11) the condition 1 —— >> —— is satisfied, then
10-4 R 1 . 1 . 1 . 1 L ] . 2h 2h 3
0 0.2 0.4 0.6 0.8 1 B 3

. A o
neglecting the term ——, for the liquid flow rate
Fig. 4. Film width D vs. plastic factor B for the case of no ipn the film we have:
viscoplastic flow zone

0=Uh- Toh’ [1—%} (19)
3upAl 2k
3A A3

To find the condition for feasibility of equation (19), it is assumed that 1— Y > 10ﬁ. This means that

A1 . . . : . A
— < —. Thus, equation (19) is valid for quite a common case when the thickness of the quasi-solid flow

zone is of the same order as the thickness of the viscoplastic flow zone. Having used formula (6), reduce
equation (19) to the form

(¢}

O=Uh+—2 p2_PE j3, 9 p3j (20)

2up 3up 3up
The withdrawn layer thickness /# enough tends asymptotically to a constant value of 4 at a sufficiently
large distance from the liquid surface in the bath (as x — o) (Fig. 1). At a time, all derivatives of /4 with
respect x tend to zero. Substitution of the appropriate quantities into equation (20) yields

0 =Uhy+—2 p2 —PE 3 1)
2up 3up

Combining equalities (20) and (21), and also using the dimensionless variables (14), for the dynamic
meniscus we have

o H® d°H BD
iCa L =(1—H)[1+—(1+H)—
08F  —e—B=0 3Ca dg? 2Ca
—A—B=0.02 22
—m—B=0l1 D? 5
—(A+H+H")|.
0.6 3Ca
/ As previously, to solve the problem stated — to
04 - determine the layer thickness 7, — it is necessary
to use condition (17) of joining the solutions for
the dynamic and static menisci in the stagnation
02 line 7. The position of the latter is found by
o substituting expression (21) into formula (10).

10° 1o® 10" 10° 100 Ca The calculation results are shown in Fig. 5. It
should be noted that in deriving equation (22) it
Fig. 5. Reaching the asymptotic value of D /+/Ca at increase in

the withdrawal speed Ca and at different values of the plastic was assumed that é < l For sufficiently large
factor B 2
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. . . . e . A 1 T .
distances from the static meniscus this condition is re-written as h_0<5 where Ag=—2 according
0 pg
to formula (6). The reduction of the obtained condition to the dimensionless form through D and B is
indicative of the fact that equation (22) can be used for the case when 2B < D. From Fig. 5 it is seen that

at sufficiently large withdrawal speed, Ca, of the plate, the film thickness becomes independent of surface

tension and is assigned only by friction and gravity forces.
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