ISSN 1561-8323 (print) УДК 517.958:537.311.1; 621.315.592

Поступило в редакцию 03.04.2017 Received 03.04.2017

Н. А. Поклонский, А. И. Ковалев, С. А. Вырко, А. Т. Власов

Белорусский государственный университет, Минск, Республика Беларусь

ПОЛУПРОВОДНИКОВЫЙ ДИОД С ПРЫЖКОВОЙ МИГРАЦИЕЙ ЭЛЕКТРОНОВ ПО ТОЧЕЧНЫМ ДЕФЕКТАМ КРИСТАЛЛИЧЕСКОЙ МАТРИЦЫ

(Представлено академиком Н. М. Олехновичем)

Впервые рассматривается полупроводниковый p^+n^+ -диод, полностью компенсированный точечными радиационными дефектами (*rt*-дефектами) одного сорта в трех зарядовых состояниях (-1, 0, +1 в единицах элементарного заряда) на фоне кристаллической матрицы. Каждый *rt*-дефект вносит два уровня энергии в запрещенную энергетическую зону полупроводника. Такой диод, в котором отсутствуют и электроны в зоне проводимости, и дырки в валентной зоне, называется ζ -диодом. Перенос зарядов в ζ -диоде осуществляется только посредством прыжков электронов между *rt*-дефектами. В дрейфово-диффузионном приближении численно решена система нелинейных дифференциальных уравнений, описывающая прыжковую миграцию электронов по *rt*-дефектам. Рассчитаны распределение электрического потенциала и зарядовых состояний дефектов вдоль ζ -диода, а также его статическая вольт-амперная характеристика для температуры 78 К. Показана возможность выпрямления прыжкового тока в ζ -диоде на основе кристаллического кремния, частично разупорядоченного точечными радиационными дефектами.

Ключевые слова: радиационные многозарядные дефекты, прыжковая миграция электронов, дрейфово-диффузионное приближение, полупроводниковый диод, вольт-амперная характеристика

Nikolai A. Poklonski, Alexander I. Kovalev, Sergey A. Vyrko, Anatoli T. Vlassov

Belarusian State University, Minsk, Republic of Belarus

SEMICONDUCTOR DIODE WITH HOPPING MIGRATION OF ELECTRONS VIA POINT DEFECTS OF CRYSTALLINE MATRIX

(Communicated by Academician N. M. Olekhnovich)

For the first time, a semiconductor p^+n^+ -diode is considered, which is completely compensated with the point irradiationinduced defects (*rt*-defects) of one kind in three charge states (-1, 0, +1 in elementary charge units) on the background of the crystalline matrix. Each *rt*-defect introduces two energy levels into the semiconductor band gap. Such a diode, in which electrons in the conduction band and holes in the valence band are absent, is called a ζ -diode. The charge transport in the ζ -diode is performed by electron hopping via *rt*-defects only. In the drift-diffusion approximation, a system of nonlinear differential equations, which describes the hopping migration of electrons via *rt*-defects, is solved numerically. The distribution of the electric potential and the charge states along the ζ -diode, as well as its static current-voltage characteristics are calculated for a temperature of 78 K. The possibility of hopping current rectification in the ζ -diode based on crystalline silicon, partially disordered by the point irradiation-induced defects, is shown.

Keywords: irradiation-induced multicharge defects, hopping migration of electrons, drift-diffusion approximation, semiconductor diode, current-voltage characteristics

Введение. Известно, что под действием ионизирующего излучения (радиации) в кристаллических полупроводниках образуются устойчивые точечные и групповые радиационные дефекты с уровнями энергии в запрещенной энергетической зоне [1–3]. Радиационное дефектообразование в полупроводниковых материалах в сочетании с термическим отжигом позволяет в широких пределах изменять тип и величину их электрической проводимости. Например, в [4] представлены обобщающие данные исследований, из которых следует, что при увеличении флюенса радиации уровень Ферми (электрохимический потенциал электронов) в полупроводниках *n*и *p*-типа стремится к предельному положению в запрещенной зоне (реже в *c*- или *v*-зоне). Так, при насыщении собственными дефектами кристаллов кремния, арсенида галлия и карбида кремния уровень Ферми стабилизируется в окрестности середины запрещенной зоны.

Ясно, что число уровней энергии и зарядовых состояний точечных радиационных дефектов (*rt*-дефектов) в полупроводниках зависит от параметров ионизирующего излучения, а также от

содержащихся в них атомов примесей. Далее, следуя [5], считается, что двухуровневые точечные *rt*-дефекты могут находиться в трех зарядовых состояниях (Z = -1, 0, +1 в единицах элементарного заряда *e* на фоне кристаллической матрицы). Конкретно, рассматриваются так называемые жесткие *rt*-дефекты, у которых энергия термической активации перехода электрона с дефекта в зарядовом состоянии (–1) в *c*-зону меньше, чем энергия активации перехода электрона с дефекта в зарядовом состоянии (0) в *c*-зону (рис. 1). Иначе, энергия термической активации перехода электрона из *v*-зоны на *rt*-дефект в зарядовом состоянии (+1) меньше, чем энергия активации перехода электрона из *v*-зоны на *rt*-дефект в зарядовом состоянии (0). Уровни энергия E_1 и E_2 таких *rt*-дефектов ($E_2 > E_1 > 0$) формируют в запрещенной зоне (энергетической щели) частично разупорядоченного полупроводника энергетические зоны {1} и {2}. Полная концентрация *rt*-дефектов $N = N_{-1} + N_0 + N_{+1}$, где N_Z – концентрация *rt*-дефектов в зарядовом состоянии *Z*. При приложении внешнего электрического поля к полупроводнику постоянный электрический ток определяется только прыжками электронов между *rt*-дефектами, а вкладом электронов *c*-зоны и дырок *v*-зоны в ток можно пренебречь [6; 7].

Актуальность исследования прыжковой электропроводности в полупроводниковых материалах, содержащих *rt*-дефекты, заключается в возможности создания на их основе приборных структур, которые востребованы в радиационно-стойкой низкотемпературной электронике, используемой в космических аппаратах [8]. Такие материалы перспективны также для разработки активных полупроводниковых электродов с целью управления химическими реакциями на границе раздела электролит/полупроводник [7]. В развитие исследований по этой тематике в [6] предложена концепция полупроводниковой барьерной структуры на p^+n^+ -диоде, в котором и p^+ область, и n^+ -область полностью компенсированы *rt*-дефектами (т. е. электроны в *c*-зоне и дырки в *v*-зоне практически отсутствуют).

Цель работы — в дрейфово-диффузионном приближении рассчитать зависимость стационарной плотности прыжкового тока от внешнего электрического напряжения на p^+n^+ -диоде, в котором ток целиком контролируется миграцией электронов по *rt*-дефектам.

Одномерная модель p^+n^+ -диода, полностью компенсированного *rt*-дефектами. Рассмотрим полупроводниковый диод с плоским p^+n^+ -переходом, сформированным в кристаллическом полу-

Рис. 1. *а* – Энергетическая зонная диаграмма ζ -диода (зависимость одноэлектронной энергии *E* от координаты *x*) в термодинамическом равновесии, E_1 и E_2 – уровни энергии *rt*-дефектов в зарядовых состояниях (+1, 0, -1), $|ap\rangle$ – уровни энергии акцепторов [все в зарядовом состоянии (-1)], $|dn\rangle$ – уровни энергии доноров [все в зарядовом состоянии (+1)], $E_F - e\varphi(x)$ – электрохимический потенциал для электронов, $E_c(x)$, $E_v(x)$ – энергии дна *c*-зоны и потолка *v*-зоны; начало отсчета E_1 , E_2 и $E_F - e\varphi(x)$ – потолок *v*-зоны $E_v(x)$; *b* – схема ζ -диода; границы двойного электрического слоя толщиной $x_2 + x_4$ выделены штриховыми линиями

Fig. 1. (a) The energy band diagram of the ζ -diode (dependence of the single-electron energy E on the coordinate x) in thermodynamic equilibrium, E_1 and E_2 are the energy levels of rt-defects in the charge states (+1, 0, -1), |ap\rangle is the energy levels of acceptors [all in the charge state (-1)], |dn\rangle are the energy levels of donors [all in the charge state (+1)], $E_F - e\varphi(x)$ is the electrochemical potential for electrons, and $E_c(x)$ and $E_v(x)$ are the energies of the bottom of the c-band and the top of the v-band; the reference point of E_1 , E_2 , and $E_F - e\varphi(x)$ is the top of the v-band $E_v(x)$; (b) The scheme of the ζ -diode; the boundaries of the electrical double layer of the width $x_- + x_-$ are indicated by dashed lines проводнике длиной *L* с серединой в точке с координатой x = 0 (металлургическая граница, на которой концентрация легирующих акцепторов равна концентрации легирующих доноров). В таком диоде «технологические» водородоподобные доноры и акцепторы с концентрациями $N_d = K_d N$, $N_a = K_a N$, где $0 < K_d < 1$ и $0 < K_a < 1$, полностью ионизованы и находятся в зарядовых состояниях (+1) и (-1) соответственно [5]. Считаем, что эти атомы примесей распределены вдоль p^+n^+ -диода (вдоль координаты *x*) так:

$$N_{a}(x) = K_{a}N / [1 + \exp(x / l)], N_{d}(x) = K_{d}N / [1 + \exp(-x / l)],$$
(1)

где x – координата; параметр l задает профиль легирования акцепторами и донорами p^+n^+ -диода.

Отметим, что распределение (1) легирующих примесей задается технологией (например, эпитаксиальной) изготовления p^+n^+ -диода (см., напр., [9]).

Далее считаем, что посредством облучения ионизирующим излучением по всему объему p^+n^+ -диода равномерно введены неподвижные двухуровневые *rt*-дефекты в трех зарядовых состояниях (-1, 0, +1). Такой p^+n^+ -диод будем называть ζ-диодом (рис. 1). Концентрация *rt*-дефектов в ζ-диоде постоянна: $N = N_{-1}(x) + N_0(x) + N_{+1}(x)$, где $N_Z(x)$ – концентрация *rt*-дефектов в зарядовом состоянии Z в точке с координатой x.

В условиях термодинамического равновесия зарядовые состояния *rt*-дефектов перераспределяются таким образом, чтобы компенсировать заряды водородоподобных доноров $|dn\rangle$ и акцепторов $|ap\rangle$ вдали от области обеднения (двойного электрического слоя) по обе стороны металлургической границы x = 0. При этом для |x| >> l выполняются условия электрической нейтральности: $N_{+1} \approx K_a N - для$ области p^+ -типа и $N_{-1} \approx K_d N - для$ области n^+ -типа. При $K_d = K_a = 0,5$ электрохимический потенциал $E_F - e\varphi(x)$, где $E_F < 0$ – уровень Ферми, $\varphi(x)$ – электрический потенциал, в p^+ -области совпадает с уровнем энергии E_1 , а в n^+ -области – с уровнем энергии E_2 . Поскольку в равновесии уровень Ферми $E_F - e\varphi(x)$ в ζ-диоде постоянен, то контактная разность электрических потенциалов $\varphi_b = \varphi(L/2) - \varphi(-L/2)$ определяется разностью между уровнями энергии E_2 и E_1 , т. е. $\varphi_b = (E_2 - E_1) / e$, где e – элементарный заряд.

Пусть к находящемуся в термостате ζ -диоду приложено внешнее постоянное (стационарное) электрическое поле, направленное вдоль оси *x*. Под действием этого поля в ζ -диоде возникает прыжковый ток – направленный перенос электронов, обусловленный прыжками одиночных электронов между *rt*-дефектами. В *p*⁺-области прыжковый ток $J_{0,+1}$ – это перенос электронов между *rt*-дефектами в зарядовых состояниях (0) и (+1), а в *n*⁺-области прыжковый ток $J_{-1,0}$ – это перенос электронов между *rt*-дефектами в зарядовых состояниях (С) и (+1), а в *n*⁺-области прыжковый ток $J_{-1,0}$ – это перенос электронов между *rt*-дефектами в зарядовых состояниях (-1) и (0). Плотностью тока $J_{-1,+1}$, обусловленного прыжками пар электронов (биполяронов), для «жестких» *rt*-дефектов по сравнению с плотностями токов $J_{-1,0}$ и $J_{0,+1}$ можно пренебречь [7; 10]. Полная плотность стационарного прыжкового тока $J_h = J_{-1,0}(x) + J_{0,+1}(x)$ в диоде не зависит от координаты [5].

В рамках дрейфово-диффузионного приближения для описания протекающих в ζ-диоде стационарных процессов прыжкового переноса одиночных электронов между *rt*-дефектами запишем систему одномерных (в окрестности точки с координатой *x*) дифференциальных уравнений [5; 7; 11]:

$$J_{-1,0}(x) = eN_{-1,0}(x) \left[M_{-1,0}E(x) + D_{-1,0}\frac{d}{dx}\ln\frac{N_{-1}(x)}{N_0(x)} \right],$$

$$J_{0,+1}(x) = eN_{0,+1}(x) \left[M_{0,+1}E(x) + D_{0,+1}\frac{d}{dx}\ln\frac{N_0(x)}{N_{+1}(x)} \right],$$

$$\frac{dE(x)}{dx} = -\frac{d^2\phi}{dx^2} = \frac{e}{\varepsilon} [N_{+1}(x) - N_{-1}(x) + N_d(x) - N_a(x)],$$

$$\frac{1}{e}\frac{dJ_{-1,0}(x)}{dx} = \alpha N_{-1}(x)N_{+1}(x) - \beta N_0^2(x),$$
(2)

$$\frac{1}{e}\frac{d}{dx}[J_{-1,0}(x) - J_{0,+1}(x)] = 2[\alpha N_{-1}(x)N_{+1}(x) - \beta N_0^2(x)],$$
$$\frac{1}{e}\frac{dJ_{0,+1}(x)}{dx} = -\alpha N_{-1}(x)N_{+1}(x) + \beta N_0^2(x),$$

где $\varepsilon = \varepsilon_r \varepsilon_0$ – статическая диэлектрическая проницаемость кристаллической матрицы; ε_r – относительная диэлектрическая проницаемость; ε_0 – электрическая постоянная; Z = -1, 0, +1 – зарядовые состояния *rt*-дефектов; $J_{-1,0}(x)$ и $J_{0,+1}(x)$ – плотности прыжковых токов, определяемые переходами электронов между *rt*-дефектами в зарядовых состояниях (-1), (0) и (0), (+1) соответственно; $N_{-1,0}(x) = N_{-1}(x)N_0(x) / N$ и $N_{0,+1}(x) = N_0(x)N_{+1}(x) / N$ – эффективные концентрации одиночных электронов, прыгающих между дефектами в зарядовых состояниях (-1), (0) и (0), (+1); $E(x) = -d\varphi(x) / dx$ – напряженность электрического поля; $M_{-1,0}$ и $M_{0,+1}$ – дрейфовые подвижности электронов, прыгаюцих между *rt*-дефектами в зарядовых состояниях (-1), (0) и (0), (+1); $D_{-1,0}$ и $D_{0,+1}$ – коэффициенты диффузии электронов, прыгающих между дефектами в зарядовых состояниях (-1), (0) и (0), (+1); $D_{-1,0}$ и $D_{0,+1}$ – коэффициенты диффузии электронов, прыгающих между дефектами в зарядовых состояниях (-1), (0) и (0), (+1); $D_{-1,0}$ и $D_{0,+1}$ – коэффициенты диффузии электронов, прыгающих между дефектами в зарядовых состояниях (-1), (0) и (0), (+1); α – коэффициент «прыжкового захвата» одного электрона с дефекта в зарядовом состоянии (-1) на дефект в зарядовом состоянии (+1), который заканчивается нейтрализацией двух дефектов [(-1) + (+1) \rightarrow 2(0)]; β – коэффициент тепловой ионизации двух электрически нейтральных *rt*дефектов [2(0) \rightarrow (-1) + (+1)]; $dJ_{-1,0} / dx + dJ_{0,+1} / dx = dJ_h / dx = 0.$

Первые два уравнения системы (2) описывают плотность прыжкового тока одиночных электронов между зарядовыми состояниями *rt*-дефектов $[(-1) \rightarrow (0)]$ и $[(0) \rightarrow (+1)]$. Правая часть каждого из этих двух уравнений есть сумма дрейфовой и диффузионной составляющих прыжкового тока. Напряженность электрического поля внутри полупроводника E(x) удовлетворяет уравнению Пуассона (третье уравнение системы (2)). Последние три уравнения системы (2) являются уравнениями непрерывности и описывают генерационно-рекомбинационные процессы в полупроводнике при прыжковом механизме переноса электронов по *rt*-дефектам. (Точнее, это переход электрона $[(-1) \rightarrow (+1)]$ в процессе рекомбинации с образованием двух электрически нейтральных *rt*-дефектов и переход электрона $[(0) \rightarrow (0)]$ в процессе генерации с образованием двух ионов с зарядами (+1) и (-1).)

Коэффициенты диффузии $D_{-1,0}$ и $D_{0,+1}$ прыгающих между *rt*-дефектами электронов в ковалентной кристаллической матрице можно по [11] оценить как

$$D_{-10} = \Gamma_{-10} R_h^2 / 6; D_{0+1} = \Gamma_{0+1} R_h^2 / 6,$$
(3)

где $\Gamma_{-1,0} = v_{lt} \exp[-(R_h / a_{-1} + \varepsilon_2 / k_B T)]$ и $\Gamma_{0,+1} = v_{lt} \exp[-(R_h / a_0 + \varepsilon_1 / k_B T)]$ – средние частоты прыжков электронов между *rt*-дефектами в зарядовых состояниях (-1), (0) и (0), (+1); $v_{lt} \approx 10$ ТГц – характерная частота фононов кристаллической матрицы; $R_h \approx N^{-1/3}$ – средняя длина прыжка электрона между *rt*-дефектами, a_{-1} и a_0 – радиусы локализации электрона на *rt*-дефекте в зарядовых состояниях (-1) и (0) соответственно; ε_1 и ε_2 – энергии термической активации прыжковой миграции электронов между дефектами с уровнями энергии E_1 и E_2 соответственно; k_B – постоянная Больцмана; T – абсолютная температура.

Коэффициент «прыжкового захвата» α одного электрона с *rt*-дефекта в зарядовом состоянии (-1) на *rt*-дефект в зарядовом состоянии (+1) согласно [11; 12] можно представить в виде $\alpha = v_{lt} / N$, где $v_{lt} \approx 10$ ТГц. Тогда связь между коэффициентами тепловой ионизации β и «прыжкового захвата» α для *rt*-дефектов можно записать в виде [12]: $\beta / \alpha = \exp[(E_1 - E_2) / k_B T] / (\gamma_1 \gamma_2)$, где γ_1 и γ_2 – факторы вырождения уровней энергии E_1 и E_2 (далее принято $\gamma_1 = \gamma_2 = 1$).

Связь между коэффициентами прыжковой диффузии $D_{-1,0}$, $D_{0,+1}$ и дрейфовыми прыжковыми подвижностями $M_{-1,0}$, $M_{0,+1}$ электронов по *rt*-дефектам устанавливается соотношением Нернста–Эйнштейна–Смолуховского [7]

$$\frac{D_{-1,0}}{M_{-1,0}} = \xi_{-1,0} \frac{k_{\rm B}T}{e}; \ \frac{D_{0,+1}}{M_{0,+1}} = \xi_{0,+1} \frac{k_{\rm B}T}{e}, \tag{4}$$

где $\xi_{-1,0} \ge 1$, $\xi_{0,+1} \ge 1$ – безразмерные параметры, которые определяются отношением флуктуационного разброса $W_1 \approx \varepsilon_1$ и $W_2 \approx \varepsilon_2$ уровней энергии *rt*-дефектов (со средним значением E_1 и E_2) к тепловой энергии $k_B T$; далее полагаем, что $\xi_{-1,0} = \xi_{0,+1} = 1$ (см., напр., [5]).

Итак, (3) и (4) дают возможность рассчитать коэффициент диффузии и подвижность прыгающих между *rt*-дефектами электронов.

Стационарное состояние ζ -диода с прыжковым током. Так как полная концентрация *rt*дефектов в ζ -диоде не зависит от координаты [$N = N_{-1}(x) + N_0(x) + N_{+1}(x)$], получаем

$$\frac{dN_{-1}}{dx} + \frac{dN_0}{dx} + \frac{dN_{+1}}{dx} = 0.$$
(5)

Учитывая соотношения (1), (4) и (5), систему уравнений (2) представим в виде

$$\frac{dN_{-1}}{dx} = \left[\frac{eN_{-1}(2N_{+1}+N_{0})}{k_{\rm B}TN}\right] \frac{d\varphi}{dx} + \left[\frac{N_{+1}+N_{0}}{eD_{-1,0}N_{0}}\right] J_{-1,0} + \left[\frac{N_{-1}}{eD_{0,+1}N_{0}}\right] J_{0,+1},$$

$$\frac{dN_{+1}}{dx} = -\left[\frac{eN_{+1}(N_{0}+2N_{-1})}{k_{\rm B}TN}\right] \frac{d\varphi}{dx} - \left[\frac{N_{+1}}{eD_{-1,0}N_{0}}\right] J_{-1,0} - \left[\frac{N_{-1}+N_{0}}{eD_{0,+1}N_{0}}\right] J_{0,+1},$$

$$\frac{d^{2}\varphi}{dx^{2}} = -\frac{e}{\varepsilon} \left[N_{+1}-N_{-1} + \frac{K_{d}N}{1+\exp(-x/l)} - \frac{K_{a}N}{1+\exp(x/l)}\right],$$

$$\frac{dJ_{-1,0}}{dx} = e(\alpha N_{-1}N_{+1} - \beta N_{0}^{2}),$$

$$\frac{dJ_{0,+1}}{dx} = e(-\alpha N_{-1}N_{+1} + \beta N_{0}^{2}).$$
(6)

Граничные условия для системы (6) с учетом (1) задаются в следующем виде (см. рис. 1):

$$N_{-1}(L/2) = \frac{K_d N}{1 + \exp(-L/2)} - \frac{K_a N}{1 + \exp(L/2)},$$

$$N_{+1}(-L/2) = \frac{K_a N}{1 + \exp(-L/2)} - \frac{K_d N}{1 + \exp(L/2)},$$

$$\phi(-L/2) = 0; \ \phi(L/2) = \phi_b - U,$$

$$J_{-1,0}(-L/2) = 0; \ J_{0,+1}(L/2) = 0,$$
(7)

где U – электрическое напряжение, приложенное к электродам ζ-диода от внешнего источника. Если U > 0, то диод смещен в прямом направлении, а если U < 0, то – в обратном.

Итак, решение системы (6) с граничными условиями (7) позволяет найти зависимость плотности стационарного прыжкового тока $J_h = J_{-1,0} + J_{0,+1}$ от полярности и величины U, т. е. вольтамперную характеристику ζ-диода.

Численные расчеты. Численное решение системы (6) с граничными условиями (7) выполнялось в программном пакете MatLab 2015. Вычисления проводились для ζ -диода из кристаллического кремния ($\varepsilon = 11,5\varepsilon_0$), длина которого L = 3 мкм; профиль легирования l = 100 нм; полная концентрация rt-дефектов $N = 10^{19}$ см⁻³; $K_d = K_a = 0,5$ (симметричный ζ -диод). Вероятные средние значения энергетических уровней rt-дефектов в Si взяты из [7; 13]: $E_1 = 250$ мэВ, $E_2 = 550$ мэВ. Для таких параметров rt-дефектов контактная разность электрических потенциалов в кремниевом ζ -диоде равна $\varphi_b = (E_2 - E_1) / e = 300$ мВ; начало координат выбрано в середине ζ -диода, т. е. x = 0 (металлургическая граница p^+n^+ -перехода). Энергия термической активации прыжкового переноса электронов между rt-дефектами $\varepsilon_1 = \varepsilon_2 = 15$ мэВ; отношение длины прыжка электрона к радиусу его локализации $R_h / a_{-1} = R_h / a_0 = 3$.

На рис. 2, *а* представлены рассчитанные по изложенной выше модели распределения электрического потенциала φ внутри ζ -диода при разных напряжениях смещения для T = 78 К. Видно, что при прямом смещении ζ -диода (U > 0) величина потенциального барьера $\varphi_b - U$ для прыгающих по *rt*-дефектам электронов уменьшается, а при обратном (U < 0) – увеличивается. На рис. 2, *b* представлены распределения концентраций *rt*-дефектов вдоль ζ -диода в зарядовых состояниях Z = -1, 0, +1 для T = 78 К. Видно, что в области обеднения превалируют дефекты в зарядовых состояниях (0), а в p^+ - и n^+ -областях, вдали от двойного электрического слоя, *rt*-дефекты

Рис. 2. *a* – Зависимость электрического потенциала φ от координаты *x* при напряжениях электрического смещения ζ-диода *U*, мВ: *1* – -300; *2* – 0; *3* – +300; *b* – распределение зарядовых состояний *rt*-дефектов вдоль ζ**-диода в состоя**нии термодинамического равновесия (при *J*_{*b*} = 0): *1* – *N*₊₁, *2* – *N*₋₁, *3* – *N*₀. (Расчеты приведены для *T* = 78 К.)

Fig. 2. (a) The dependence of the electric potential φ on the coordinate x at the voltages of electrical bias of the ζ -diode U, mV: I - -300; 2 - 0; 3 - +300; (b) The distribution of the charge states of rt-defects along the ζ -diode in the state of thermodynamic equilibrium (at $J_h = 0$): $I - N_{+1}, 2 - N_{-1}, 3 - N_0$. (Calculations are performed for T = 78 K.)

находятся в зарядовых состояниях (0), (+1) и (-1), (0) соответственно. Для оценки справедливости полученных результатов (в отсутствие прыжкового тока $J_h = J_{-1,0} + J_{0,+1} = 0$ при U = 0) используем формулы $f_z(x) = N_z(x) / N$ из [7] в виде

$$f_{-1}(\varphi(x)) = \left[1 + \gamma_2 \exp\left(\frac{E_2 + E_F - e\varphi(x)}{k_B T}\right) + \frac{\gamma_2}{\gamma_1} \exp\left(\frac{E_1 + E_2 + 2(E_F - e\varphi(x))}{k_B T}\right)\right]^{-1},$$

$$f_0(\varphi(x)) = \left[1 + \gamma_1^{-1} \exp\left(\frac{E_1 + E_F - e\varphi(x)}{k_B T}\right) + \gamma_2^{-1} \exp\left(-\frac{E_2 + E_F - e\varphi(x)}{k_B T}\right)\right]^{-1},$$

$$f_{+1}(\varphi(x)) = \left[1 + \gamma_1 \exp\left(\frac{-E_1 - E_F + e\varphi(x)}{k_B T}\right) + \frac{\gamma_1}{\gamma_2} \exp\left(\frac{-E_1 - E_2 - 2(E_F - e\varphi(x))}{k_B T}\right)\right]^{-1},$$
(8)

где $\gamma_1 = 1$, $\gamma_2 = 1$ – факторы вырождения уровней энергии $E_1 > 0$, $E_2 > 0$ [уровни энергии *rt*-дефектов E_1 , E_2 и электрохимический потенциал $E_F - e\varphi(x)$ отсчитываются от потолка *v*-зоны $E_v(x)$]. Далее подставим в (8) значения уровня Ферми $E_F = -E_1 = -250$ мэВ и потенциала $\varphi(x)$, представленного кривой 2 на рис. 2, *a* для U = 0. В итоге получаются $N_Z(x) = Nf_Z(x)$, приведенные на рис. 2, *b*.

На рис. 3 представлена вольт-амперная характеристика ζ -диода, рассчитанная для температуры T = 78 К. Видно, что плотность стационарного прыжкового тока через ζ-диод на основе кристаллического кремния (при $E_{2} - E_{1} = 300$ мэВ) сильно зависит от полярности приложенного к диоду электрического напряжения. Расчеты также показывают, что повышение температуры приводит к увеличению плотности как прямого $J_{\rm hf}$, так и в большей степени обратного $J_{\rm hr}$ прыжкового тока через ζ-диод. Это связано с выравниванием населенностей уровней энергии rt-дефектов E_1 и E_2 под действием тепла. При увеличении длины ζ-диода L и/или параметра легирования l происходит уменьшение плотности прямого $J_{\rm hf}$ и обратного $J_{\rm hr}$ прыжкового тока, возбуждаемых внешним электрическим напряжением на диоде. В первом случае это связано с увеличением прыжкового электрического сопротивления *p*⁺и n^+ -областей диода, а во втором – с расширением двойного электрического слоя ζ-диода.

Рис. 3. Статическая зависимость плотности прямого $J_{\rm hf}$ и обратного $J_{\rm hr}$ прыжкового тока от электрического напряжения на ζ-диоде при T = 78 К

Fig. 3. The static dependence of the current density of forward $J_{\rm hf}$ and reverse $J_{\rm hr}$ hopping current on the electric voltage across the ζ -diode at T = 78 K

Заключение. В дрейфово-диффузионном приближении построена стационарная модель p^+n^+ перехода (ζ -диода), содержащего двухуровневые *rt*-дефекты в трех зарядовых состояниях (-1, 0, +1), позволяющая рассчитывать его характеристики при разных входных параметрах. В рамках модели записана и впервые численно решена стационарная система нелинейных дифференциальных уравнений, описывающая прыжковую миграцию электронов по *rt*-дефектам в ζ -диоде. Полученные результаты показывают возможность выпрямления прыжкового тока в кремниевом ζ -диоде при низких (криогенных) температурах.

Благодарности. Работа выполнена в рамках программы Республики Беларусь «Маттех». Acknowledgements. The work is supported by the Belarusian National Research Program "Mattekh".

Список использованных источников

1. Coates, R. The optical and electrical effects of high concentrations of defects in irradiated crystalline gallium arsenide / R. Coates, E. W. J. Mitchell // Adv. Phys. – 1975. – Vol. 24, N 5. – P. 593–644. doi.org/10.1080/00018737500101471

2. Козлов, В. А. Легирование полупроводников радиационными дефектами при облучении протонами и α-частицами / В. А. Козлов, В. В. Козловский // Физика и техника полупроводников. – 2001. – Т. 35, № 7. – С. 769–795.

3. Лебедев, А. А. Радиационная стойкость SiC и детекторы жестких излучений на его основе / А. А. Лебедев, А. М. Иванов, Н. Б. Строкан // Физика и техника полупроводников. – 2004. – Т. 38, № 2. – С. 129–150.

4. Брудный, В. Н. Зарядовая нейтральность в полупроводниках: дефекты, границы раздела, поверхность / В. Н. Брудный // Изв. вузов. Физика. – 2013. – Т. 56, № 7. – С. 27–29.

5. Поклонский, Н. А. Дрейф и диффузия электронов по двухуровневым (трехзарядным) точечным дефектам в кристаллических полупроводниках / Н. А. Поклонский, А. И. Ковалев, С. А. Вырко // Докл. Нац. акад. наук Беларуси. – 2014. – Т. 58, № 3. – С. 37–43.

6. Поклонский, Н. А. Прыжковая электропроводность в компенсированных полупроводниках и приборных структурах на их основе / Н. А. Поклонский // Междунар. зимняя школа по физике полупроводников 2011: науч. прогр. и тез. докл., С.-Петербург–Зеленогорск, 25–28 февр. 2011 г. – СПб., 2011. – С. 43–48.

7. Поклонский, Н. А. Расчет электрической емкости самокомпенсированных полупроводников с межцентровыми прыжками одного и двух электронов (на примере кремния с радиационными дефектами) / Н. А. Поклонский, С. А. Вырко, А. Г. Забродский // Физика и техника полупроводников. – 2008. – Т. 42, № 12. – С. 1420–1425.

8. Юдинцев, В. Радиационно стойкие интегральные схемы. Надежность в космосе и на Земле / В. Юдинцев // Электроника: Наука, Технология, Бизнес. – 2007. – № 5. – С. 72–77.

9. Korvink, J. G. Semiconductors for Micro- and Nanotechnology: An Introduction for Engineers / J. G. Korvink, A. Greiner. – Weinheim: Wiley, 2002. – 340 p. doi.org/10.1002/3527600221

10. Поклонский, Н. А. Стационарная прыжковая миграция биполяронов по «мягким» точечным дефектам в частично разупорядоченных полупроводниках / Н. А. Поклонский, С. А. Вырко, А. И. Ковалев // Весці НАН Беларусі. Сер. фіз.-мат. навук. – 2014. – № 3. – С. 91–96.

11. Поклонский, Н. А. Стационарная прыжковая фотопроводимость по многозарядным примесным атомам в кристаллах / Н. А. Поклонский, С. Ю. Лопатин // Физика твердого тела. – 1998. – Т. 40, № 10. – С. 1805–1809.

12. Климкович, Б. В. Прыжковая электропроводность на переменном токе ковалентных полупроводников с глубокими дефектами / Б. В. Климкович, Н. А. Поклонский, В. Ф. Стельмах // Физика и техника полупроводников. – 1985. – Т. 19, № 5. – С. 848–852.

13. Watkins, G. D. Intrinsic defects in silicon / G. D. Watkins // Mater. Sci. Semicond. Process. - 2000. - Vol. 3, N 4. - P. 227-235. doi.org/10.1016/s1369-8001(00)00037-8

References

1. Coates R., Mitchell E. W. J. The optical and electrical effects of high concentrations of defects in irradiated crystalline gallium arsenide. *Advances in Physics*, 1975, vol. 24, no. 5, pp. 593–644. doi.org/10.1080/00018737500101471

2. Kozlov V. A., Kozlovski V. V. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles. *Semiconductors*, 2001, vol. 35, no. 7, pp. 735–761. doi.org/10.1134/1.1385708

3. Lebedev A. A., Ivanov A. M., Strokan N. B. Radiation resistance of SiC and nuclear-radiation detectors based on SiC films. *Semiconductors*, 2004, vol. 38, no. 2, pp. 125–147. doi.org/10.1134/1.1648363

4. Brudnyi V. N. Charge neutrality in semiconductors: defects, interfaces, surface. *Russian Physics Journal*, 2013, vol. 56, no. 7, pp. 754–756. doi.org/10.1007/s11182-013-0095-4

5. Poklonski N. A., Kovalev A. I., Vyrko S. A. Drift and diffusion of electrons via two-level (triple-charged) point defects in crystalline semiconductors. *Doklady Natsional'noi Akademii Nauk Belarusi* [Doklady of the National Academy of Sciences of Belarus], 2014, vol. 58, no. 3, pp. 37–43 (in Russian).

6. Poklonski N. A. Hopping electrical conduction in compensated semiconductors and device structures based on them. *Nauchnaya programma i tezisy dokladov Mezhdunarodnoi zimnei shkoly po fizike poluprovodnikov 2011* [Proceedings of the International Winter School on Semiconductor Physics 2011]. Saint-Petersburg, 2011, pp. 43–48 (in Russian).

7. Poklonski N. A., Vyrko S. A., Zabrodskii A. G. Calculation of capacitance of self-compensated semiconductors with intercenter hops of one and two electrons (by the example of silicon with radiation defects). *Semiconductors*, 2008, vol. 42, no. 12, pp. 1388–1394. doi.org/10.1134/s1063782608120038

8. Yudintsev V. Radiation hardened integrated circuits. Reliability in space an on Earth. *Elektronika: Nauka, Tehnologija, Biznes* [Electronics: Science, Technology, Business], 2007, no. 5, pp. 72–77 (in Russian).

9. Korvink J. G., Greiner A. Semiconductors for Micro- and Nanotechnology: An Introduction for Engineers. Wiley, 2002. 340 p. doi.org/10.1002/3527600221

10. Poklonski N. A., Vyrko S. A., Kovalev A. I. Stationary hopping migration of bipolarons via "soft" point defects in partly disordered semiconductors. *Vestsi Natsyianal'nai akademii navuk Belarusi. Seryia fizika-matematychnykh navuk* [Proceedings of the National Academy of Sciences of Belarus. Series of Physical-Mathematical Sciences], 2014, no. 3, pp. 91–96 (in Russian).

11. Poklonskii N. A., Lopatin S. Yu. Stationary hopping photoconduction among multiply charged impurity atoms in crystals. *Physics of the Solid State*, 1998, vol. 40, no. 10, pp. 1636–1640. doi.org/10.1134/1.1130623

12. Klimkovich B. V., Poklonskii N. A., Stelmakh V. F. Alternating-current hopping electrical-conductivity of covalent semiconductors with deep-level defects. *Semiconductors*, 1985, vol. 19, no. 5, pp. 522–524.

13. Watkins G. D. Intrinsic defects in silicon. *Materials Science in Semiconductor Processing*, 2000, vol. 3, no. 4, pp. 227–235. doi.org/10.1016/s1369-8001(00)00037-8

Информация об авторах

Поклонский Николай Александрович – д-р физ.-мат. наук, профессор. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: poklonski@bsu.by.

Ковалев Александр Игоревич – аспирант. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: kovalev. aleksand@gmail.com.

Вырко Сергей Александрович – канд. физ.-мат. наук, ст. науч. сотрудник. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: vyrko@bsu.by.

Власов Анатолий Тимофеевич – канд. физ.-мат. наук, доцент, вед. науч. сотрудник. Белорусский государственный университет (пр. Независимости, 4, 220030, Минск, Республика Беларусь). E-mail: vlassov_anatoli@ mail.ru.

Для цитирования

Полупроводниковый диод с прыжковой миграцией электронов по точечным дефектам кристаллической матрицы / Н. А. Поклонский [и др.] // Докл. Нац. акад. наук Беларуси. – 2017. – Т. 61, № 3. – С. 30–37.

Information about the authors

Poklonski Nikolai Alexandrovich – D. Sc. (Physics and Mathematics), Professor. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: poklonski@bsu.by.

Kovalev Alexander Igorevich – Postgraduate student. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: kovalev.aleksand@ gmail.com.

Vyrko Sergey Alexandrovich – Ph. D. (Physics and Mathematics), Senior researcher. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: vyrko@bsu.by.

Vlassov Anatoli Timofeevich – Ph. D. (Physics and Mathematics), Assistant Professor, Leading researcher. Belarusian State University (4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus). E-mail: vlassov_anatoli@mail.ru.

For citation

Poklonski N. A., Kovalev A. I., Vyrko S. A., Vlassov A. T. Semiconductor diode with hopping migration of electrons via point defects of crystalline matrix. *Doklady Natsional'noi akademii nauk Belarusi* [Doklady of the National Academy of Sciences of Belarus], 2017, vol. 61, no. 3, pp. 30–37 (in Russian).