ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

XUMUЯ CHEMISTRY

УДК 547.514.4 https://doi.org/10.29235/1561-8323-2019-63-3-291-297

Поступило в редакцию 01.10.2018 Received 01.10.2018

Ф. С. Пашковский, Д. И. Корнеев, академик Ф. А. Лахвич

Институт биоорганической химии Национальной академии наук Беларуси, Минск, Республика Беларусь

СИНТОНЫ ДЛЯ НОВЫХ 11-ДЕЗОКСИ-3-ОКСА-3,7-ИНТЕР-м-ФЕНИЛЕНОВЫХ АНАЛОГОВ ПРОСТАГЛАНДИНОВ

Аннотация. Разработана схема синтеза циклопентеноновых синтонов для метаболически стабильных 11-дезокси-3-окса-3,7-интер-*м*-фениленовых аналогов простагландинов. Ключевой стадией схемы является конденсация циклопентан-1,3-диона с легко доступным метиловым эфиром 3-(формилфенокси)уксусной кислоты по Кневенагелю в присутствии эфира Ганча.

Ключевые слова: циклопентан-1,3-дион, метиловый эфир 3-(формилфенокси)уксусной кислоты, эфир Ганча, конденсация по Кневенагелю, циклопентеноновые синтоны, интерфениленовые аналоги простагландинов

Для цитирования: Пашковский, Ф. С. Синтоны для новых 11-дезокси-3-окса-3,7-интер-M-фениленовых аналогов простагландинов / Ф. С. Пашковский, Д. И. Корнеев, Ф. А. Лахвич // Докл. Нац. акад. наук Беларуси. — 2019. — Т. 63, № 3. — С. 291—297. https://doi.org/10.29235/1561-8323-2019-63-3-291-297

Felix S. Pashkovsky, Dmitry I. Korneev, Academician Fedor A. Lakhvich

Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

SYNTHONS FOR NEW 11-DEOXY-3-OXA-3,7-INTER-m-PHENYLENE PROSTAGLANDIN ANALOGUES

Abstract. A synthetic scheme for obtaining cyclopentenone synthons for metabolically stable 11-deoxy-3-oxa-3,7-inter-*m*-phenylene prostaglandin analogues has been developed. The key step of the scheme is the Knoevenagel condensation of cyclopentane-1,3-dione with the readily available 3-(formylphenoxy)acetic acid methyl ester in the presence of Hantzsh ester.

Keywords: cyclopentane-1,3-dione, 3-(formylphenoxy)acetic acid methyl ester, Hantzsh ester, Knoevenagel condensation, cyclopentenone synthons, interphenylene prostaglandin analogues

For citation: Pashkovsky F. S., Korneev D. I., Lakhvich F. A. Synthons for new 11-deoxy-3-oxa-3,7-inter-*m*-phenylene prostaglandin analogues. *Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2019, vol. 63, no. 3, pp. 291–297 (in Russian). https://doi.org/10.29235/1561-8323-2019-63-3-291-297

Введение. Модифицированные ароматическим фрагментом по боковым цепям аналоги простагландинов (ПГ) и простациклина находят широкое применение в медицинской и ветеринарной практике. Так, из 14 аналогов ПГ, разрешенных к применению Управлением по контролю за продуктами и лекарствами Министерства здравоохранения США (US Food and Drug Administration), 8 фармсубстанций в своей структуре содержат ароматический цикл [1]. Такие простаноиды используют в гинекологии (сульпростон) [2], в качестве эффективных лекарственных средств для лечения язвы желудка (энпростил) [2], легочно-артериальной гипертензии и болезней периферических артерий (трепростинил [3], берапрост [2; 4]), открытоугольной глаукомы (латанопрост, травопрост, биматопрост, тафлупрост) [5–7]. Препараты клопростенол, флупростенол, фенпростален широко применяют в ветеринарии в качестве лютеолитических агентов [2; 8].

Среди синтетических биоактивных простаноидов большой интерес представляют 3,7-интерфениленовые [8; 9], а также 3-окса-аналоги [10]. Проявляя высокую биологическую активность, такие простаноиды обладают повышенной метаболической стабильностью за счет устойчивости интерфениленового фрагмента и/либо 3-окса-группы к β -окислению α -цепи — одному из основных направлений метаболического распада ПГ в организме [8]. В связи с этим синтез новых

[©] Пашковский Ф. С., Корнеев Д. И., Лахвич Ф. А., 2019

биоактивных метаболически стабильных 3,7-интерфениленовых и 3-окса-аналогов ПГ является важной научной и практической задачей.

Результаты и их обсуждение. Ранее нами на основе тетроновой кислоты и алкоксизамещенных ароматических альдегидов была разработана схема синтеза 3,7-интерфениленовых гетеропростаноидов серии В [11; 12], ключевыми стадиями в которой были конденсация тетроновой кислоты с замещенными ароматическими альдегидами по Кневенагелю и последующее хемоселективное восстановление экзоциклической кросс-сопряженной двойной связи в образующихся при этом 3-арилидентетрагидрофуран-2,4-дионах.

В настоящем сообщении мы описываем синтетическую схему получения циклопентеноновых синтонов для 11-дезокси-3-окса-3,7-интер-*м*-фениленовых простаноидов на основе циклопентан-1,3-диона (1) и метилового эфира 3-(формилфенокси)уксусной кислоты (2).

В разработанной нами схеме циклопентан-1,3-дион (1) служит предшественником циклической части целевых синтонов, а легко доступный метиловый эфир 3-(формилфенокси)уксусной кислоты (2) — предшественником 3-окса-3,7-интер-m-фениленовой α -простаноидной цепи. Остаток уксусной кислоты в соединении (2) служит фрагментом C^1 – C^2 α -цепи, а формильная группа — связующим звеном между α -цепью и циклической частью будущего аналога $\Pi\Gamma$ и атомом C^7 его углеродного скелета.

«Стыковку» соединений (1) и (2) можно осуществить путем их конденсации по Кневенагелю с образованием кросс-сопряженного дикетона (3). Как указано выше, такой подход мы использовали для получения 3,7-интерфениленовых 3,10(11)-диокса-13-аза- и 9-окса-7-азапростаноидов на основе тетроновой кислоты [11; 12]. Однако в отличие от образующихся при этом 3-арилидентетрагидрофуран-2,4-дионов родственные им кросс-сопряженные дикетоны типа (3) являются реакционноспособными соединениями, которые *in situ* реагируют с другой молекулой циклопентан-1,3-диона с образованием михаэлевских аддуктов типа (6). Поэтому для предотвращения образования нежелательного аддукта (6) в реакционной смеси необходимо присутствие реагента-«ловушки», способного быстро и селективно восстановить реакционноспособную кросс-сопряженную кратную связь в интермедиате (3). В предлагаемой нами схеме в качестве такой «ловушки» мы использовали эфир Ганча (4). Так, катализируемая пролином конденсация соединений (1) и (2) по Кневенагелю в присутствии 1,1 экв. эфира Ганча (4) привела к β-дикарбонильному соединению (5) с выходом 60 %.

Следует отметить, что восстановление эфирами Ганча представляет собой биомиметический процесс, так как он имитирует биохимическое восстановление субстратов ферментами, реакционным центром кофакторов которых является 1,4-дигидропиридиновый гетероцикл (НАДН, НАДФН) [13].

Реакция диона (5) с п-толуолсульфонилхлоридом в присутствии 1 экв. триэтиламина с количественным выходом приводит к образованию тозилата (7). Известно, что сопряженная карбонильная группа в тозилатах типа (7) хемоселективно восстанавливается борогидридом натрия с образованием соответствующих аллильных спиртов. Обработка последних дигидратом щавелевой кислоты либо п-толуолсульфокислотой во влажном хлороформе приводит к последовательному отщеплению тозильной группы и молекулы воды с образованием циклопентенонов [14].

Однако в случае тозилата (7) по указанному методу образуются два продукта реакции, которые были разделены хроматографически. Общим для полученных соединений является то, что в их ИК спектрах наблюдается интенсивная полоса валентных колебаний сопряженной карбонильной группы пятичленного цикла в области 1694—1695 см⁻¹, а в спектрах ЯМР ¹Н присутствует однопротонный узкий мультиплет в области 7,14—7,18 м. д., характерный для винильного протона циклопентенонового фрагмента. В спектре ЯМР ¹³С обоих соединений циклопентеноновому фрагменту отвечают сигналы атома углерода винильной группы =СН при 159,0 м. д. и атома углерода сопряженной карбонильной группы цикла в области 209,1—209,2 м. д.

В ИК спектре хроматографически более подвижного продукта реакции присутствует интенсивная полоса валентных колебаний карбонила сложноэфирной группировки при $1740~{\rm cm}^{-1}$. В его спектре ЯМР 1 Н наблюдается синглетный трехпротонный сигнал метильной группы сложного эфира в области $3,80~{\rm m}$. д. и двупротонный синглетный сигнал смежной со сложноэфирной группировкой ОСН $_2$ -группы в области $4,61~{\rm m}$. д. Спектр ЯМР 13 С этого соединения характеризуется наличием сигнала первичного атома углерода метильной группы сложного эфира при $52,2~{\rm m}$. д., четырех сигналов вторичных атомов углерода метиленовых групп, а также сигнала атома углерода карбонильной группы сложного эфира при $169,4~{\rm m}$. д. На основании вышеприведенных данных можно сделать вывод, что хроматографически более подвижному продукту реакции отвечает целевой циклопентенон (12). Структура последнего косвенно подтверждается наличием в его масс-спектре пиков ионов $261,1~{\rm [}M+{\rm H}{\rm]}^+$ и $283,1~{\rm [}M+{\rm Na}{\rm]}^+$.

В ИК спектре хроматографически менее подвижного продукта реакции отсутствует полоса валентных колебаний карбонильной группы сложного эфира, при этом наблюдается широкая полоса в области $3417 \, \, \mathrm{cm^{-1}}$, отвечающая валентным колебаниям гидроксильной группы. В его спектре ЯМР ¹Н отсутствуют синглетные сигналы протонов метильной группы сложного эфира и ОСН₂-группы. Вместо этого в области 3,95 и 4,06 м. д. наблюдаются два двупротонных триплета с КССВ 4,5 Γ ц, а также широкий сигнал при 2,03-2,17 м. д. от протона гидроксигруппы. В спектре ЯМР ¹³С этого соединения отсутствует сигнал первичного атома углерода метильной группы и сигнал атома углерода карбонильной группы сложного эфира и наблюдаются сигналы вторичных атомов углерода пяти метиленовых групп. Исходя из этого можно заключить, что менее подвижному продукту реакции отвечает первичный спирт (13), образующийся в результате кислотной обработки присутствующего в смеси со сложным эфиром (8) соединения (9). Диол (9) является результатом восстановления сложноэфирной группировки в тозилате (7) борогидридом натрия. Структуру соединения (13) косвенно подтверждает масс-спектр по наличию пика иона $233,1 \, [M+H]^+$ и характерного для спиртов пика $[M-H_2O+H]^+$ (215,0). Образование циклопентеноновых синтонов (12, 13) на основе тозилата (7) отражено на схеме ниже.

Таким образом, нами обнаружен редкий случай восстановления сложноэфирной группировки борогидридом натрия в спиртовом растворе при комнатной температуре, поскольку в большинстве описанных в научной литературе методик сложноэфирная группа характеризуется устойчивостью к борогидридному восстановлению. В нашем случае восстановление сложноэфирной группы при комнатной температуре можно объяснить ее активацией феноксиметиленовой группировкой.

Экспериментальная часть. Температуры плавления полученных соединений измерены на блоке Boëtius. ИК спектры сняты на приборе FT-IR PerkinElmer Spectrum 100 для образцов

в пленке или в таблетках КВг. Спектры ЯМР 1 Н (500 МГц) и 13 С (125,7 МГц) записаны на спектрометре Bruker Avance-500 с использованием остаточного сигнала растворителя в качестве внутреннего стандарта (CDCl₃: 7,26 м. д. для ядер 1 Н, 77,0 м. д. для ядер 13 С; DMSO- d_6 : 2,50 м. д. для ядер 1 Н, 39,5 м. д. для ядер 13 С; CD $_3$ СО $_2$ D: 2,04 м. д. для ядер 1 Н, 20,0 м. д. для ядер 13 С). Различение сигналов первичных, вторичных, третичных и четвертичных атомов углерода в спектре 13 С синтезированных веществ проводилось на основании результатов эксперимента DEPT (Distortionless Enhancement by Polarization Transfer). Масс-спектры полученных соединений зарегистрированы на комплексе ВЭЖХ Agilent 1200 с масс-спектрометром типа тройной квадруполь Agilent 6410 в режиме ионизации ESI (электроспрей) с детектированием положительных ионов. Контроль протекания реакций и чистоты всех полученных соединений проводили методом ТСХ на пластинках Silufol UV-254 или Alufol UV-254 (Merck). Для хроматографии использовали силикагель Kieselgel 60 HF254 TLC-стандарт (Merck) и Kieselgel 60 (Fluka).

Метил-2-(3-формилфенокси)ацетат (2) был получен по методу [15] с выходом 95 %. Маслообразное вещество. ИК спектр (v, см $^{-1}$): 1765 (C=O сл. эфира), 1710 (C=O аром. альдегида), 1595, 1490, 1460, 1445, 1220 (макс.). Спектр ЯМР 1 Н (CDCl $_{3}$, δ , м. д.): 3,82 с (3H, CO $_{2}$ СН $_{3}$), 4,70 с (2H, CH $_{2}$), 7,23 д. д. д (1H $_{apom}$, 3 Ј 8,0, 4 Ј $_{1}$ 2,5, 4 Ј $_{2}$ 1,0 Ги), 7,36 д. д (1H $_{apom}$, H 2 , 4 Ј $_{1}$ 2,5, 4 Ј $_{2}$ 1,0 Ги), 7,47 т (1H $_{apom}$, H 5 , 3 Ј 8,0 Ги), 7,51 д. т (1H $_{apom}$, 3 Ј 7,5, 4 Ј 1,0 Ги), 9,97 с (1H, CHO). Спектр ЯМР 13 С (CDCl $_{3}$, δ , м. д.): 52,2 (СО $_{2}$ СН $_{3}$), 65,0 (СН $_{2}$), 112,7 (СН $_{apom}$), 121,9 (СН $_{apom}$), 124,3 (СН $_{apom}$), 130,2 (СН $_{apom}$), 137,7 (С $_{apom}$), 158,2 (С $_{apom}$), 168,7 (С=O сл. эфира), 191,7 (СНО).

Метил-2-{3-|(2,5-диоксоциклопентил)метил]фенокси}ацетат (5). К суспензии 0,637 г (6,5 ммоль) циклопентан-1,3-диона (1) в 40 мл дихлорметана при комнатной температуре добавили 2,17 г (13 ммоль) метилового эфира 2-(3-формилфенокси)уксусной кислоты (2), 2,63 г (10,4 ммоль) диэтил-2,6-диметил-1,4-дигидропиридин-3,5-дикарбоксилата (4) и 0,038 г (5 мол. %) *L*-пролина. Реакционную смесь перемешивали в течение 12 ч при комнатной температуре, затем растворитель упаривали в вакууме. Твердый замасленный остаток промывали диэтиловым эфиром для удаления избытка метилового эфира 2-(3-формилфенокси)уксусной кислоты, затем для удаления *L*-пролина остаток промывали водой и твердое вещество растворяли в хлороформе,

раствор сушили сульфатом натрия. После упаривания растворителя продукт реакции выделяли методом колоночной хроматографии на силикагеле (элюент — хлороформ). Получили 0,4 г соединения ($\mathbf{5}$) в виде белого кристаллического вещества. Выход: 60 %. Т. пл. 154—156 °C. ИК спектр (\mathbf{v} , см⁻¹): 2740—2423 широк., 1764 (С=О сл. эфира), 1602, 1586, 1439, 1386 (макс.), 1373, 1267, 1224, 1176. Спектр ЯМР ¹H (DMSO- d_6 , δ , м. д.): 3,28 с (2H, CH₂Ar), 3,34 с (4H, 2CH₂ цикла), 3,69 с (3H, CO₂CH₃), 4,71 с (2H, OCH₂), 6,67 д. д (1H_{аром}, ³J 8,0, ⁴J 2,5 Гц), 6,69 уш. с (1H_{аром}), 6,76 д (1H_{аром}, ³J 8,0 Гц), 7,12 т (1H_{аром}, ³J 8,0 Гц), 11,74 уш. с (1H, OH енола). Спектр ЯМР ¹H (CD₃CO₂D, δ , м. д.): 2,81 с (4H, 2CH₂ цикла), 3,67 с (2H, CH₂Ar), 3,98 с (3H, CO₂CH₃), 4,85 с (2H, OCH₂), 6,89 д. д (1H_{аром}, ³J 8,0, ⁴J 2,0 Гц), 7,00 т (1H_{аром}, ⁴J 2,0 Гц), 7,06 д (1H_{аром}, ³J 8,0 Гц), 7,34 т (1H_{аром}, ³J 8,0 Гц). С₁₅Н₁₆О₅. Масс-спектр, m / z: 277,1 [M + H]⁺ (100 %), 299,1 [M + Na]⁺, 315,1 [M + K]⁺, 553,2 [2M + H]⁺.

Метил-2-{3-|(5-оксо-2-(гозилокси)циклопент-1-енил)метил|фенокси}ацетат (7). К суспензии 0,4 г (1,45 ммоль) β-дикарбонильного соединения (5) в дихлорметане при перемешивании по каплям добавили 0,3 мл (1,45 ммоль) триэтиламина, а затем – 0,414 г (1,45 ммоль) п-толуолсульфохлорида. Реакционную смесь перемешивали в течение 6 ч при комнатной температуре и оставляли на ночь. Целевое вещество выделяли методом колоночной хроматографии на силикагеле (элюент – хлороформ). Получено 0,62 г маслообразного продукта реакции. Выход 99 %. ИК спектр (v, см⁻¹): 1761 (С=О сл. эфира), 1711 (С=О в цикле), 1663, 1599, 1493, 1442, 1386, 1336, 1312, 1269, 1245, 1208, 1171 (макс.), 1094. Спектр ЯМР ¹H (СDСІ₃, δ, м. д.): 2,47 с (3H, СН₃), 2,51–2,53 м (2H, СН₂ цикла), 2,90–2,92 м (2H, СН₂ цикла), 3,31 с (2H, СН₂Ar), 3,81 с (3H, СО₂CH₃), 4,58 с (2H, ОСН₂), 6,67 т (1H _{аром}, ⁴J 1,5 Гц), 6,70–6,74 м (2H _{аром}), 7,12 т (1H _{аром}, ³J 8,0 Гц), 7,37 д (2H _{аром}, ³J 8,5 Гц), 7,78 д (2H _{аром}, ³J 8,5 Гц). Спектр ЯМР ¹³С (СDСІ₃, δ, м. д.): 21,8 (СН₃), 26,9 (СН₂), 27,3 (СН₂), 34,5 (СН₂), 52,2 (СО₂СН₃), 65,2 (ОСН₂), 112,5 (СН _{аром}), 114,9 (СН _{аром}), 122,1 (СН _{аром}), 128,0 (2СН _{аром}), 128,9 (С), 129,5 (СН _{аром}), 130,3 (2СН _{аром}), 132,7 (С), 139,6 (С), 146,4 (С), 157,8 (С), 169,4 (С=О сл. эфира), 174,7 (С), 203,8 (С=О в цикле). С₂₂Н₂₂О₇S. Масс-спектр, m / z: 431,1 [M + H]⁺ (100 %), 453,1 [M + Nа]⁺.

Синтез циклопентенонов (12, 13). К раствору 0,6 г (1,4 ммоль) тозилата (7) в 4,2 мл метанола по порциям добавляли борогидрид натрия до исчезновения исходного соединения в реакционной смеси (контроль методом ТСХ). Метанол упаривали, к остатку добавляли хлороформ и 1 н. раствор соляной кислоты. Органический слой отделяли, остатки продукта реакции из водной фазы экстрагировали хлороформом. К объединенным экстрактам добавляли п-толуолсульфокислоту либо дигидрат щавелевой кислоты и полученную смесь интенсивно перемешивали при комнатной температуре в течение 3 ч. Продукты реакции разделяли колоночной хроматографией на силикагеле (элюент – хлороформ). Масса вещества верхней фракции составила 0,17 г, а нижней фракции — 0,14 г.

Метил-2-{3-[(5-оксоциклопент-1-енил)метил]фенокси}ацетат (12). Маслообразное вещество верхней фракции. Выход 47 %. ИК спектр (v, см $^{-1}$): 1740 (C=O сл. эфира, макс.), 1695 (C=O циклопентенона, макс.), 1630, 1600, 1490, 1445, 1260, 1160, 1090, 1050. Спектр ЯМР 1 Н (CDCl $_{3}$, δ , м. д.): 2,40–2,44 м (2H, CH $_{2}$ в цикле), 2,51–2,56 м (2H, CH $_{2}$ в цикле), 3,44 ушир. с (2H, CH $_{2}$ Ar), 3,79 с (3H, CO $_{2}$ CH $_{3}$), 4,61 с (2H, OCH $_{2}$), 6,73 д. д (1H $_{apom}$, 3 J 8,0, 4 J 2,0 Гц), 6,75 ушир. с (1H $_{apom}$), 6,83 ушир. д (1H $_{apom}$, 3 J 8,0 Гц), 7,14–7,17 узк. м (1H, CH $_{винильн}$), 7,20 т (1H $_{apom}$, 3 J 8,0 Гц). Спектр ЯМР 13 С (CDCl $_{3}$, δ , м. д.): 26,4 (CH $_{2}$), 31,2 (CH $_{2}$), 34,5 (CH $_{2}$), 52,2 (CO $_{2}$ CH $_{3}$), 65,2 (OCH $_{2}$), 112,1 (CH $_{apom}$), 115,4 (CH $_{apom}$), 122,4 (CH $_{apom}$), 129,5 (CH $_{apom}$), 140,6 (С $_{apom}$), 145,5 (С), 157,8 (С $_{apom}$), 159,0 (СН $_{винильн}$), 169,3 (С=O сл. эфира), 209,1 (С=O в цикле). С $_{15}$ H $_{16}$ O $_{4}$. Масс-спектр, m / z: 261,1 [M + H] $^{+}$ (100 %), 283,1 [M + Nа] $^{+}$.

2-[3-(2-Гидроксиэтокси)бензил]циклопент-2-енон (13). Маслообразное вещество нижней фракции. Выход 46 %. ИК спектр (v, см⁻¹): 3417 (широк.), 3049, 2925, 2875, 1694 (С=О, макс.), 1630, 1600, 1585, 1491, 1447, 1300, 1261, 1158, 1085, 1052. Спектр ЯМР ¹H (CDCl₃, δ , м. д.): 2,03–2,17 уш. сигнал (1H, OH), 2,42–2,44 м (2H, CH₂ в цикле), 2,53–2,56 м (2H, CH₂ в цикле), 3,45 к (2H, CH₂Ar, ⁴ $J = {}^5J = 1,0$ Гц), 3,95 т (2H, С $\underline{\text{H}}_2$ OH, 3J 4,5 Гц), 4,06 т (2H, OCH₂, 3J 4,5 Гц), 6,75–6,80 м (2H_{аром}), 6,80 уш. д (1H_{аром}, 3J 7,5 Гц), 7,16–7,18 узк. м (1H, CH_{винильн}), 7.20 д. д (1H_{аром}, 3J 8,5, 3J 7,5 Гц). Спектр ЯМР ¹³С (CDCl₃, δ , м. д.): 26,5 (CH₂), 31,3 (CH₂), 34,6 (CH₂), 61,4 (CH₂), 69,0 (OCH₂), 112,2 (CH_{аром}), 115,3 (CH_{apoм}), 121,7 (CH_{apoм}), 129,5 (CH_{apoм}), 140,6 (C_{apoм}), 145,7 (C), 158,8 (C_{apoм}),

159,0 (СН $_{\mbox{\tiny винильн}}$), 209,2 (С=О в цикле). С $_{\mbox{\tiny 14}}$ Н $_{\mbox{\tiny 16}}$ О $_{\mbox{\tiny 3}}$. Масс-спектр, m / z: 215,0 [M – H $_{\mbox{\tiny 2}}$ О $_{\mbox{\tiny 1}}$ + H $_{\mbox{\tiny 1}}$ (100 %), 255,0 [M + Na] $^{+}$.

Заключение. Нами разработана схема синтеза циклопентеноновых синтонов для новых биоактивных метаболически стабильных 11-дезокси-3-окса-3,7-интер-м-фениленовых аналогов простагландинов, ключевой стадией которой является конденсация циклопентан-1,3-диона с легко доступным метиловым эфиром 3-(формилфенокси)уксусной кислоты по Кневенагелю в присутствии эфира Ганча. Обнаружено, что сложноэфирная группа 3-окса-3,7-интерфениленовой α-цепи склонна к восстановлению борогидридом натрия в мягких условиях за счет ее активации феноксиметиленовой группировкой.

Список использованных источников

- 1. Ge, Y.-Y. Progress in the Total Synthesis of Prostaglandins / Y.-Y. Ge, Z.-Y. Cai, W.-C. Zhou // Chin. J. Pharm. 2013. Vol. 44, N 7. P. 720–728.
- 2. Collins, P. W. Synthesis of Therapeutically Useful Prostaglandin and Prostacyclin Analogs / P. W. Collins, S. W. Djuric // Chem. Rev. 1993. Vol. 93, N 4. P. 1533–1564. https://doi.org/10.1021/cr00020a007
- 3. Budev, M. M. Overview of treprostinil sodium for the treatment of pulmonary arterial hypertension / M. M. Budev, O. A. Minai, A. C. Arroliga // Drugs Today (Barc). 2004. Vol. 40, N 3. P. 225–234. https://doi.org/10.1358/dot.2004.40.3.820086
- 4. Melian, E. B. Beraprost: a review of its pharmacology and therapeutic efficacy in the treatment of peripheral arterial desease and pulmonary arterial hypertension / E. B. Melian, K. L. Goa // Drugs. 2002. Vol. 62, N 1. P. 107–133. https://doi.org/10.2165/00003495-200262010-00005
- 5. Analytic review of bimatoprost, latanoprost and travoprost in primary open angle glaucoma / S. Holmstrom [et al.] // Curr. Med. Res. Opin. 2005. Vol. 21, N 11. P. 1875–1883. https://doi.org/10.1185/030079905x65600
- 6. Curran, M. P. Bimatoprost: a review of its use in open-angle glaucoma and ocular hypertension / M. P. Curran // Drugs Aging. 2009. Vol. 26, N 12. P. 1049–1071. https://doi.org/10.2165/11203210-000000000-00000
- 7. Tafluprost for glaucoma / M. Papadia [et al.] // Expert. Opin. Pharmacother. 2011. Vol. 12, N 15. P. 2393–2401. https://doi.org/10.1517/14656566.2011.606810
 - 8. Простагландины и их аналоги в репродукции животных и человека / Γ . А. Толстиков [и др.]. Уфа, 1989. 400 с.
- 9. Простаноиды. XI. Синтез некоторых о-интерфенилен-окса
аналогов 11-дезоксипростагландина $E_{_1}$ / Γ . A. Толстиков [и др.] // ЖОр
X. 1984. Т. 20, вып. 11. С. 2285—2295.
- 10. Лахвич, Ф. А. Гетеропростаноиды: синтез и биологическая активность / Ф. А. Лахвич, Ф. С. Пашковский, Е. В. Королева // Усп. хим. 1992. Т. 61, вып. 2. С. 456-495.
- 11. Пашковский, Ф. С. Синтез предшественников 3,7-интерфениленовых гетеропростаноидов на основе тетроновых кислот / Ф. С. Пашковский, М. Г. Грибовский, Ф. А. Лахвич // Докл. Нац. акад. наук Беларуси. -2006. Т. 50, № 3. С. 69-72.
- 12. Гетероциклические аналоги простагландинов. IV. Синтез 3,7-интерфениленовых 3,10(11)-диокса-13-азапростаноидов и 9-окса-7-азапростаноидов на основе тетроновой кислоты и ароматических альдегидов / Φ . С. Пашковский [и др.] // ЖОрХ. 2008. Т. 44, вып. 5. С. 667–680.
- 13. Zheng, C. Transfer hydrogenation with Hantzsch esters and related organic hydride donors / C. Zheng, S.-L. You // Chem. Soc. Rev. 2012. Vol. 41, N 6. P. 2498–2518. https://doi.org/10.1039/c1cs15268h
- 14. Лахвич, Ф. А. 11-Дезокси-13,15-изоксазолопростаноиды с функционализированной α -цепью на основе 2-ацетилциклопентан-1,3-диона и фурфурола / Ф. А. Лахвич, Ф. С. Пашковский, Л. Г. Лис // ЖОрХ. 1992. Т. 28, вып. 12. С. 2483—2489.
- 15. Cheng, M.-F. Liquid-Phase Combinatorial Synthesis of 1,4-Benzodiazepine-2,5-diones as the Candidates of Endothelin Receptor Antagonism / M.-F. Cheng, J.-M. Fang // J. Comb. Chem. -2004. Vol. 6, N 1. P. 99-104. https://doi.org/10.1021/cc030034d

References

- 1. Ge Y.-Y., Cai Z.-Y., Zhou W.-C. Progress in the Total Synthesis of Prostaglandins. *Chinese Journal of Pharmaceuticals*, 2013, vol. 44, no. 7, pp. 720–728.
- 2. Collins P. W., Djuric S. W. Synthesis of Therapeutically Useful Prostaglandin and Prostacyclin Analogs. *Chemical Reviews*, 1993, vol. 93, no. 4, pp. 1533–1564. https://doi.org/10.1021/cr00020a007
- 3. Budev M. M., Minai O. A., Arroliga A. C. Overview of treprostinil sodium for the treatment of pulmonary arterial hypertension. *Drugs of Today (Barcelona)*, 2004, vol. 40, no. 3, pp. 225–234. https://doi.org/10.1358/dot.2004.40.3.820086
- 4. Melian E. B., Goa K. L. Beraprost: a review of its pharmacology and therapeutic efficacy in the treatment of peripheral arterial desease and pulmonary arterial hypertension. *Drugs*, 2002, vol. 62, no. 1, pp. 107–133. https://doi.org/10.2165/00003495-200262010-00005
- 5. Holmstrom S., Buchholz P., Walt J., Wickstrøm J., Aagren M. Analytic review of bimatoprost, latanoprost and travoprost in primary open angle glaucoma. *Current Medical Research and Opinion*, 2005, vol. 21, no. 11, pp. 1875–1883. https://doi.org/10.1185/030079905x65600

- 7. Papadia M., Bagnis A., Scotto R., Traverso C. E. Tafluprost for glaucoma. *Expert Opinion on Pharmacotherapy*, 2011, vol. 12, no. 15, pp. 2393–2401. https://doi.org/10.1517/14656566.2011.606810
- 8. Tolstikov G. A., Miftakchov M. S., Lazareva D. N., Pomoinetskii V. D., Sidorov N. N. *Prostaglandins and their analogues in reproduction of animals and humans*. Ufa, 1989. 400 p. (in Russian).
- 9. Tolstikov G. A., Miftakchov M. S., Adler M. E., Sidorov N. N. Prostanoids. XI. Synthesis of some o-interphenylene-oxa-analogues of 11-deoxyprostaglandin E₁. *Zhurnal Organicheskoi Khimii = Russian Journal of Organic Chemistry*, 1984, vol. 20, no. 11, pp. 2285–2295 (in Russian).
- 10. Lakhvich F. A., Pashkovsky F. S., Koroleva E. V. Heteroprostanoids: synthesis and biological activity. *Russian Chemical Reviews*, 1992, vol. 61, no. 2, pp. 243–266 https://doi.org/10.1070/rc1992v061n02abeh000943
- 11. Pashkovsky F. S., Gribovsky M. G., Lakhvich F. A. Synthesis of 3,7-interphenylene heteroprostanoid precursors on the basis of tetronic acids. *Doklady Natsional noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2006, vol. 50, no. 3, pp. 69–72 (in Russian).
- 12. Pashkovskii F. S., Shchukina E. M., Gribovskii M. G., Lakhvich F. A. Heterocyclic analogs of prostaglandines: IV. Synthesis of 3,7-interphenylene 3,10(11)-dioxa-13-azaprostanoids and 9-oxa-7-azaprostanoids based on tetronic acid and aromatic aldehydes. *Russian Journal of Organic Chemistry*, 2008, vol. 44, no. 5, pp. 657–670. https://doi.org/10.1134/s1070428008050047
- 13. Zheng C., You S.-L. Transfer hydrogenation with Hantzsch esters and related organic hydride donors. *Chemical Society Reviews*, 2012, vol. 41, no. 6, pp. 2498–2518. https://doi.org/10.1039/c1cs15268h
- 14. Lakhvich F. A., Pashkovsky F. S., Liss L. G. 11-Deoxy-13,15-isoxazoloprostanoids with functionalized α-chain on the basis of 2-acetylcyclopentane-1,3-dione and furfural. *Zhurnal Organicheskoi Khimii = Russian Journal of Organic Chemistry*, 1992, vol. 28, no. 12, pp. 2483–2489 (in Russian).
- 15. Cheng M.-F., Fang J.-M. Liquid-Phase Combinatorial Synthesis of 1,4-Benzodiazepine-2,5-diones as the Candidates of Endothelin Receptor Antagonism. *Journal of Combinatorial Chemistry*, 2004, vol. 6, no. 1, pp. 99–104. https://doi.org/10.1021/cc030034d

Информация об авторах

Пашковский Феликс Сигизмундович — канд. хим. наук, заведующий лабораторией. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: pashkovsky61@ mail.ru.

Корнеев Дмитрий Игоревич — мл. науч. сотрудник. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: nocterumm@gmail.com.

Лахвич Федор Адамович — академик, д-р хим. наук, профессор, гл. науч. сотрудник. Институт биоорганической химии НАН Беларуси (ул. Купревича, 5/2, 220141, Минск, Республика Беларусь). E-mail: lakhvich@iboch.by.

Information about the authors

Pashkovsky Felix Sigizmundovich – Ph. D. (Chemistry), Head of the Laboratory. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: pashkovsky61@mail.ru.

Korneev Dmitry Igorevich – Junior researcher. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: nocterumm@gmail.com.

Lakhvich Fedor Adamovich – Academician, D. Sc. (Chemistry), Professor, Chief researcher. Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus (5/2, Kuprevich Str., 220141, Minsk, Republic of Belarus). E-mail: lakhvich@iboch.by.