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MUHUMAJIBHBIE NIOJTUHOMBI YHUIIOTEHTHBIX 3JIEMEHTOB HEITPOCTOI'O NOPAJKA
B HEITPUBOAUMBIX NPEJCTABJEHUAX HCKJITIOUYNUTEJBbHBIX AITEBPAUMYECKUX I'PYIIIT
B HEKOTOPBIX XOPOIINX XAPAKTEPUCTUKAX

(Ilpeocmasneno akademurxom B. U. Anuescrkum)

AHHOTaHI/lﬂ. B paae cnyqaeB Hap'l)leHbI MHWHHUMAJIbBHBIE MHOT' OYJICHBI 06pa3OB yHHHOTeHTHbIX DJIEMEHTOB HEIIPOCTOI'O
MOpPSIIKa B HETPHBOAUMBIX TIPEACTABICHUSIX HCKIIOYMTEIbHBIX AJre0panuecKuX IPYIIN B XOPOIIMX XapaKTEPUCTUKAX.
VCTaHOBIIEHO, YTO €CIU p > 5 I IPYNIbI TUMA E v p > 3 JUIsl IPYTHX HCKIIOUMTEIBHBIX a1reOpanieckux IpyIi, To s
HEMPUBOMMBIX MPEICTABICHUI 3TUX TPYII B XaPAKTEPHCTHKE p C GOJNBIINMH OTHOCHTENLHO XapaKTEPUCTHKH CTAPIIUMHU
BECAMH CTENEeHh MHHUMAJIBHOTO MHOTOUJICHa 00pa3a YHHIIOTEHTHOTO 3JIEMEHTA PaBHA MOPSAKY STOTO 3JIEMEHTA.

KiaoueBblie ¢/10Ba: MCKIIIOYHTENIbHBIE aJITe€0panveCcKUe IPYIINbl, YHUIIOTCHTHBIE 3JIEMEHTBI, HEPUBOIMMbIE TIPEICTAB-
JIEHHSI

Jast untuposanus: bycen, T. C. MUHHMAaJIbHbBIE MOJTMHOMBI YHUIIOTEHTHBIX 3JIEMEHTOB HEIIPOCTOTO TOPSIIKA B HEMPHU-
BOJIMMBIX MPEICTABICHHUSX UCKIIOUUTEIBHBIX aIreOpanueckKuX Py B HEKOTOPBIX Xopoinnx xapakrepuctukax / T. C. By-
cen, U. [I. Cynpynenko, J[. Tectepman // Jlokn. Ham. akan. Hayk bemnapycu. — 2019. — T. 63, Ne 5. — C. 519-525. https://doi.
org/10.29235/1561-8323-2019-63-5-519-525

Introduction. In a number of cases the minimal polynomials of the images of unipotent elements
of non-prime order in irreducible representations of the exceptional algebraic groups in good characte-
ristics are found. The problem is completely solved for the groups of types E, and G, (for the latter
group, in characteristics 2 and 3 as well), for representations of the groups of type F| in characteristics
5 and 11, the groups of type £ in characteristics 5, 7, and 17, and the groups of type E| in characteristics
7 and 29. It is proved that if p > 5 for a group of type E, and p > 3 for other exceptional algebraic groups,
then for irreducible representations of these groups in characteristic p with large highest weights with
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respect to p, the degree of the minimal polynomial of the image of a unipotent element is equal to the
order of this element.

The minimal polynomials of the images of unipotent elements of non-prime order in irreducible
representations of the classical algebraic groups in odd characteristics have been found in [1], for
unipotent elements of prime order and all simple algebraic groups, the problem was solved in [2]. In [1]
one can find a motivation for this problem connected with recognizing representations and linear groups
by the presence of particular matrices and a short discussion of some results on a similar problem for
irreducible representations of finite groups close to simple.

The main part. Throughout the text C is the complex field, K is an algebraically closed field of an
odd characteristic p, Z and Z* are the sets of integers and nonnegative integers, respectively, G is
a simply connected simple algebraic group of an exceptional type over K, G . is the simply connected
simple algebraic group over C of the same type as G, r is the rank of G, ®, 1 <i <r, are the fundamental
weights of G, o(p) is the highest weight of a representation ¢. For an element x and a representation p
of some algebraic group, the symbol dp(x) denotes the degree of the minimal polynomial of p(x); (i, o)
is the value of a weight 1 on a root a (the canonical pairing in the sense of [3, Section 1]). If ¢ is an
irreducible representation of G, then . is the irreducible representation of G with highest weight o (¢).
The characteristic p is called good for G if the maximal root of G is a linear combination of the simple
roots with the coefficients smaller than p. Hence p is good for a group of type E, for p > 5 and p is good
for other exceptional groups if p > 3. If p is good for G, there exists a canonical bijection f from the set of
unipotent conjugacy classes of G onto the analogous set for G . determined with the help of the
distinguished parabolic subgroups in the Levi subgroups of G (see, for instance, comments in the
Introduction of [4]). In what follows if x € G is a unipotent element from a class C, then x. € f(C) C G..
Recall that an irreducible representation of a semisimple algebraic group over K is p-restricted if all
coefficients of its highest weight (when expressed as a linear combination of the fundamental weights)
are less than p.

It is well known that G contains unipotent elements of non-prime order in the following cases:

a) G=E/(K)or F,(K),p<13;

b) G=E(K),p <19,

0) G=E(K),p <3l

d)G=G,(K),p<7
(see [4]). In these situations if p is good for G, then the maximal order of a unipotent element in G is p*.

Theoreml. Let5 <p <1l for G=E(K), p € {5,7, 17} for G = E(K), p =7 or 29 for G = E(K),
p=>5orllfor G=F,(K), andp =5 for G = G(K). Assume that x € G is an element of order p* and ¢
is a p-restricted irreducible representation of G. Then

d (x) = min{d,.(x¢). pd. (). p*} 1)

or one of the following holds:

1) p=35,G=E(K), x is a regular unipotent element, () = 0., d(p(x) =24;

2)p=7,G=E[(K), x is an element from the conjugacy class E(a,), ®(¢) = ®,, d(p(x) =15;

3)p=17,G=E(K), x is an element from the conjugacy class E.(a,), ®(¢) = o,, dw(x) =36;

4)p="7,G = E[(K), x is a regular unipotent element, ®(¢) = ,, dq)(x) =44;

S)p=",G=E[(K), x is an element from the conjugacy class E(a,), ®(¢) = o+ ., d(P(x) =27,

6)p=17,G=E(K), x is an element from the conjugacy class E (a,), ®(¢) = 20, dw(x) =29;

TYp=1,G = E(K), x is an element from the conjugacy class E(a,), ®(¢) = 30, d(p(x) =43;

8)p=17,G=E(K), x is an element from the conjugacy class E(a,) or E (a,) + A,, a regular unipotent
element from a subsystem subgroup of type A, or an element from a subsystem subgroup of type D, that
in the standard realization of this subgroup has Jordan blocks of sizes 9 and 7, »(¢) = ,, d(P(x) =15;

9 p =1, G = E(K), x is a regular unipotent element from a subsystem subgroup of type D., ®(9) = o,
d (x)=22;

! 10) p =7, G = E(K), x is a regular unipotent element from a subsystem subgroup of type D, or an
element from a subsystem subgroup of type D, that in the standard realization of this subgroup has
Jordan blocks of sizes 13 and 3, o(¢) = w,, d(p(x) = 43;

1) p =7, G = E(K), x is such as in Item 8), () = 20,, dq)(x) =29;
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12) p =7, G = E(K), x is a regular unipotent element from a subsystem subgroup of type D.,
o () = 2w, d@(x) =43;

13) p =7, G = E(K), x is such as in Items 8) and 11), ®(¢) = 3w,, a’w(x) =43,

Here the labeling of the unipotent conjugacy classes of G is such as in [2]. To find d ¢ (xc) and
dw(xp), one can apply results of [2, Theorem 1.1, Proposition 1.3, Algorithm 1.4, and Tables].

By the Steinberg tensor product theorem [5, Theorem 1.1], if p is an irreducible representation of

J
a semisimple algebraic group over K, then p= ® py o Fr* where all p, are p-restricted and Fr is the
k=0 .

J
Frobenius morphism determined by raising the elements of the field to the power p. Set ®'(p) = > &(pk ).
k=0
The weight o'(p) is uniquely determined. We call an irreducible representation p of a simple algebraic

group I over K p-large if (@'(p), B) > p for a maximal root § of .

For p-large representations, the problem under consideration is solved for the exceptional algebraic
groups in all good characteristics.

Theorem?2. Letp >S5 for G = E(K), p > 3 otherwise, and ¢ be a p-large irreducible representation
of G. Then d(p(x) = |x| for each unipotent element x € G.

Now state our results for G = G (K) and p = 2 or 3. For p = 2, the group G has two conjugacy classes
of unipotent elements of non-prime order. One of them consists of regular unipotent elements, another
contains a regular unipotent element from a subsystem subgroup of type 4,.

Propositionl. Let p =2, x € G be a regular unipotent element, y € G be a regular unipotent
element from a subsystem subgroup of type A,, and ¢ be a nontrivial irreducible representation of G.
Then d(p(x) =6and dq)(y) =3 for o(¢) = 2o,. Otherwise d(p(x) = |x| = 8 and d(p(y) =y =4

For p = 3, only regular unipotent elements have order p?, other unipotent elements have order p.

Proposition?2. Letp =3, x € G be a regular unipotent element, and ¢ be a nontrivial
irreducible representation of G. Then d(p(x) =17 for o(¢) = Yo, or Yo, and d‘p(x) = |x| =9 otherwise.

We need some more notation. In what follows I is a simply connected simple algebraic group over C
or K, A(T'), A*(T"), R(I"), R*(I"), and R~(T'), respectively, are the sets of weights, dominant weights, roots,
positive and negative roots of I, II(I") is a basis in R(I'); XB and xﬁ(t) are the root subgroup and the root
element of I' associated with a root B and an element ¢ of the field; c/(x) is the Zarisky closure of the
conjugacy class containing an element x; I'(B, ..., B,) is the subgroup of I" generated by root subgroups
Xips ..., Xp; . We use the notation I' ., ,, and o(o) as for G.

Throughout the text dim M (dim ¢) is the dimension of a [-module M (a representation ¢), A(M) is
the set of weights of M, and d, (x) is the degree of the minimal polynomial of an element x acting on M.
Ifo € A'(T), then M(w), (w), and ¢(w) are the irreducible module, the Weyl module, and the irreducible
representation of I" with highest weight ®; w(m) is the weight of a weight vector m from some module. If
H is a subgroup of T, then M | H is the restriction of a [-module M to H. We assume that the weights and
the roots of I" are considered with respect to a fixed maximal torus 7. If 7N H is a maximal torus in H,
then o | H is the restriction of a weight ® to 7 N H. In this case for a weight vector m from some
[-module, we set o, (m) = o(m)|H. If M is an irreducible I-module, then v € M is a nonzero highest
weight vector.

The following facts are used intensively in the proofs of the main results.

Proposition3/[l,apartof Proposition 2.5]. Let M be a I-module, x € I be a unipotent element,
and |x|= p*"'>p.

() Assume that < s and z = xp Thenp'(d,(2) - 1) <d, (2) <p'd, (2).

(b) Let y= x? sdy () =a+ 1, M =(y—1)'M, and dy,(x)=b. Then b < p*, d, (x) = ap* + b, and
dim(x —1)% e 1M dim(x—-1)""'M

Denote by C; / the number of comblnatlons of j elements chosen from 7 elements.

Lemmal[6, Lemma 224]. Let a= Zajp and b= ijp where a, b € Z*. Suppose that

J=0 J=0
a, +b <p, 0<j<s. ThenC; ,#0(mod p).
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In Lemma 2 and Theorem 3 J is a unipotent Jordan block of size a, d(u) is the degree of the minimal
polynomial of a unipotent element u regarded as an element of GL (K) where ¢ is clear from the context.

We shall write J, ® J, = J;; @...®@ J,, if J;, ..., J;, is the complete collection of blocks in the canonical
Jordan form of the matrix J, ® J, (multiplicities are taken into account); in this case we also write kJ,
instead of the sumJ @ ... & J, (k times).

Lemma?2 [7, Chapter VIII, Theorem 2.7]. Let 1 <s <t <p. Then

h-1
Jy®Jg= @Iy fuia NI,

where h=min{f, p — g}, N=0 for f+g<p,and N = f+ g—p for f+ g > p. In particular, d(Jf® Jg) =

=ftg-1forf+tg<panddJ,®J)=pforf+g>p.
Theorem3[8 Lemma 6.14 and Theorem 6.4]. Set g = p*, s > 1. Assume that 0 < g, h <gq,

/
Je®J,=2®J, ®NJ,,
i=1

and alln < q. Then | =min{g, h, g — g, q — h}.
Leta=uq +gandb=vq+hwithO<u<v<p-1.ForO<j<uputf=v-u+2jIfa+b<pq,
then

[ u-l1 [ u-1
J ®Jb_®@-]j]q+n,®@@t](fj+2)q nl@@|g h|J(fj+2)q(-D(-D|q g— h|J(j]+1)q®P

i=1j=0
where
0 forl=g,
P (&= M)J (v-u)q forl=h,
(& +h =) (wrving forl=q—h,
(&= (v-u)g (g +h—q)] usn-q) forl=q—g.
Hence d(J,® J,) < pq.

Now let a + b > pq. Set a, = pq—a, b, =pgq—b. Then a, + b, < pq and
Jo®Jp=Jy ®Jy @(a+b—pg)J .

Therefore d(J, @ J,) = pq.

Lemm a3 [2, Lemma 2.20]. Let I' be a semisimple algebraic group, x, y € I be unipotent, and
y € cl(x). Then d(P(y) < d¢(x) for each representation ¢ of T.

In the following lemma the symbol ]Fp denotes the field of p elements.

Lemma4][l, Lemma 2.38]. Let I" be a semisimple algebraic group over K, B, ..., B, E R(T), t,

t €7, andt be the image oft under the natural homomorphism 7, — IF Let x= Hx[g (t])eF
k
Xc = HxB] (t;) el ¢, and ¢ be an irreducible representation of I. Then d o(x) < d o (xc)

Jj=1
Lemm a5 [l, Lemma 2.42]. Let T be a semisimple algebraic group over C or K, I C TI(T') be

a proper subset, and M be a I-module. Denote by X, the set of integer linear combinations of the simple
roots from I. Set R, = R(I') N £, and R" = R*(I') \ (R N R(T)). Letm =m +...4m,_ € Mandm 1<j<k
be the weight components ofm If k> 1, assume that o(m,) — oo(m) ex for 1 < i<j<k Suppose that
xe(X |loeR), x, e (X |acR NR(T)), x=xx, and (x, —l)m;tO Then(x 1) # 0. In particular,
d, () =d, (x).

Lemma6[l, Lemma2.51]. Let A, and L, € A'(I'), ® = A, + A, M = M(kj), M = M(w), andx € T be
a unipotent element. Then d yy(x) < d pr, (x)+d pr, (x) = 1.

Lemma7. Let M be a I-module, N be a composition factor of M, and x € I be a unipotent element.
Then d, (x) > d, ().

Lemma 7 follows easily from [9, Lemma 2.4].
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Proposition4|[2, Proposition 2.15]. Let w, A, M, and M be such as in Lemma 6 and
r r
x € (X | o€ R(T). Forl € Z', put A, ={ueA(M) lo—pu=> cia;, D¢ Zl}.
i=1 i=l1

Let v, € M. and v € M be nonzero highest weight vectors, and let (x—1) 1i v; #0 for somef SN

=1,2. Assume that f=f, +f,, C N0 (mod p), the vectors (x —1) 1i v j have nonzero weight components
ofwezght M, and dim V(m) = d1m M for w=y +u,. Then (x — 1)fv # 0. In particular, the inequality
holds if dim V((D)M — dim M for all p 6 A (for instance, if A, consists of the lowest weight of M or the
module V(®) is irreducible).

Theorem4][l, Theorem 1.1]. For a p-large representation p of a simple algebraic group I of
a classical type over K and a unipotent element x € 1, the degree of the minimal polynomial of p(x) is
equal to the order of x.

The length of this article does not permit us to include the proofs even for the principal results, so we
present the general outline of these proofs. Let p be good for G. It is well known that for every unipotent
conjugacy class of G, one can choose for representatives x and x. products of the “same” root elements
with the coefficients from the prime field or the ring of integers, respectively. Hence we can apply
Lemma 4 which yields that d,(x) < d ¢ (xc) for each irreducible representation ¢. One has to consider
separately the groups of all types in different characteristics because of the differences in the structure
of centralizers of unipotent elements from a fixed conjugacy class. If for a fixed p, the groups of type E,
have elements of order p? for different i, we start our analysis from the groups of the smallest possible
rank.

Results of [2] imply that in the proof of Theorem 2 it suffices to consider the cases where G has
unipotent elements of non-prime order.

First assume that one of the following holds:

) G=E(K),p=5o0r7,

2)G=E(K),p €157, 11},

3) G=E(K),p € {7, 11, 13, 17},

4)G=F,(K),p=5orT.

In this situation the proof of Theorem 2 is based on the following

Proposition3. Let HC G be a subsystem subgroup of type A, or D, for G = E(K), of type 4,
D, or E for G = E(K), of type A,, D,, or E, for G = E(K), and of type C, or B, for G = F (K), and ¢ be
a p-large irreducible representation of G. Then the restriction ¢ | H has a p-large composition factor.

Spaltenstein’s results [10] imply that under our assumptions for each element x € G of order p?, the
set c/(x) contains an element u of order p* from one of the groups H from Proposition 5. Therefore
Theorem 2 for such groups follows from Theorem 4, Proposition 5, and Lemmas 3 and 7.

Let ¢ be a p-restricted irreducible representation of G. Assume that none of Conditions 1-4 holds or
@ is not p-large. Let x € G be an element of order p* and y = x*. One can find d,(») using the results of [2].
Suppose that x € H where H C G is a subsystem subgroup with simple components of classical types.
The majority of unipotent conjugacy classes in G contain elements from such subgroups. The minimal
polynomials of the images of unipotent elements in irreducible representations of the classical algebraic
groups in odd characteristics are found in [1, Theorems 1.1, 1.3, 1.9, and 1.10]. In the restriction ¢ | H we
construct a composition factor y such that d\,(x)=min{d,. (xc), pdy(y), pz}. Then by Lemmas
4 and 7 and Proposition 3, dq)(x) = dw(x). Observe that if it is proved that d(p(x) = p? or dq)(x) = pd(p(y), then
by Lemma 3 and Proposition 3, in the first case d(p(z) = p? for each unipotent element z with x € ¢/(z), and
in the second one d(P(u) = d(P(x) for each element u such that x € c/(u) and v’ = y. For G = E(K) or E(K),
we apply this approach also to elements that lie in subsystem subgroups one of whose simple components
is of type E, or £, respectively, and use already available results for the groups of smaller ranks and the
same characteristic.

Now let x be an element which is not conjugate to any element of a proper subsystem subgroup of G,
and let one cannot deduce from Lemma 3 that a’(p(x) = d$(q) for some element ¢ from such subgroup. Assume
that dq)(y) =a + 1. Let M be a module affording the representation ¢ and M = (y — D“M. Often we can
represent x in the form x = xx" where x, and x’ satisfy the assumptions of Lemma 5, [x | = p,x, € S C C (),




524 Doklady of the National Academy of Sciences of Belarus, 2019, vol. 63, no. 5, pp. 519-525

and S is a semisimple subgroup. We construct a weight vector m € M, invariant with respect to a maximal
unipotent subgroup of S. Using results of [2], one can find the minimal polynomial of x, on some
composition factor of KSm. Then we apply Lemma 5 and Proposition 3 to estimate d , (x) and d (x),

respectively. If in this situation we can show that d s (x) 2 min{d - (xc), pdy (), p?}, then one can
find d, (x) using Lemma 4 and Proposition 3. Sometimes Lemma 6 yields that d, (x) <d, and the approach
described above allows one to prove that d, (x) > d. Then d, (x) = d.

In some situations we use Proposition 4 and an explicit construction of certain representations.
Lemma 1 is applied to check whether the assumption of Proposition 4 on the binomial coefficient holds.

If for fixed G and p the problem is solved for all p-restricted representations, one can solve it in the
general case applying Lemma 2 and Theorem 3.

Finally, let G = G,(K) and p = 2 or 3. In the proof of Proposition 1 Lawther’s results on the block
structure of the images of unipotent elements of G in the irreducible representations with highest weights
o, and o, [4], well-known properties of the Steinberg module, and Theorem 3 and Lemma 2 are used.

The proof of Proposition 2 is based on the following: Lawther’s results mentioned above, the
information on morphisms and properties of representations of a group of type G, in characteristic 3
from [3, § 10 and § 12], the irreducibility of the restriction of the irreducible representation of a group
of type B, in an odd characteristic with highest weight 2w, to a subgroup of type G, [11, Theorem 17.1],
the theorem on the minimal polynomials of the images of regular unipotent elements in the irreducible
representations of the classical algebraic groups in odd characteristics [1, Theorem 1.7], Theorem 3, and
Lemma 2.

Conclusion. The minimal polynomials of the images of unipotent elements of non-prime order in
irreducible representations of the exceptional algebraic groups in some good characteristics are found.
In the majority of cases these polynomials are determined by Formula (1), the exceptions are indicated in
Theorem 1.
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