ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

МАТЕМАТИКА

MATHEMATICS

УДК 511.42 https://doi.org/10.29235/1561-8323-2020-64-1-7-12 Поступило в редакцию 15.08.2018 Received 15.08.2018

Н. В. Бударина¹, Д. Диккинсон², В. И. Берник³

¹Технологический институт, Дандолк, Ирландия
²Ирландский национальный университет в Мейнуте, Мейнут, Ирландия
³Институт математики Национальной академии наук Беларуси, Минск, Республика Беларусь

ОЦЕНКИ СНИЗУ ДЛЯ КОЛИЧЕСТВА ВЕКТОРОВ С АЛГЕБРАИЧЕСКИМИ КООРДИНАТАМИ ВБЛИЗИ ГЛАДКИХ ПОВЕРХНОСТЕЙ

(Представлено академиком Н. А. Изобовым)

Аннотация. Пусть z=f(x,y) — некоторая поверхность в трехмерном евклидовом пространстве. Рассмотрим некоторый слой V, точки которого удовлетворяют неравенству $|f(x,y)-z| < Q^{-\gamma}$, где $0 < \gamma < 1$ и Q — достаточно большое натуральное число. В работах Хаксли, Бересневича, Велани было изучено распределение рациональных точек в V. В данной работе изучается распределение точек с алгебраическими сопряженными действительными координатами $\vec{\alpha}=\alpha_1,\alpha_2,\alpha_3$ в V. При некотором $c_1=c_1(n)$ получена оценка снизу вида $c_2Q^{n+1-\gamma}$ для количества алгебраических чисел степени $n\geq 3$ и высоты не более c_3Q .

Ключевые слова: алгебраические числа, диофантовы приближения, геометрия чисел

Для цитирования: Бударина, Н. В. Оценки снизу для количества векторов с алгебраическими координатами вблизи гладких поверхностей / Н. В. Бударина, Д. Диккинсон, В. И. Берник // Докл. Нац. акад. наук Беларуси. -2020. - T. 64, № 1. - C. 7-12. https://doi.org/10.29235/1561-8323-2020-64-1-7-12

Nataliya V. Budarina¹, Detta Dickinson², Vasiliy I. Bernik³

¹Dundalk Institute of Technology, Dundalk, Ireland
²National University of Ireland, Maynooth, Ireland
³Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

LOWER BOUNDS FOR THE NUMBER OF VECTORS WITH ALGEBRAIC COORDINATES NEAR SMOOTH SURFACES

(Communicated by Academician Nikolai A. Izobov)

Abstract. Let z = f(x, y) be a surface in three-dimensional Euclidean space. Consider a neighborhood V of this surface, whose points satisfy the inequality $|f(x, y) - z| < Q^{-\gamma}$, where $0 < \gamma < 1$ and Q is a sufficiently large positive integer. In the works of Huxley, Beresnevich, Velani, the distribution of rational points in V has been started. In this article, we study the distribution of points with real conjugate algebraic coordinates $\bar{\alpha} = \alpha_1, \alpha_2, \alpha_3$ in V. For some $c_1 = c_1(n)$, a lower bound is obtained in the form of $c_2Q^{n+1-\gamma}$ for the number of algebraic numbers of degree $n \ge 3$ and of height at most c_3Q .

Keywords: algebraic numbers, Diophantine approximation, geometry of numbers

For citation: Budarina N. V., Dickinson D., Bernik V. I. Lower bounds for the number of vectors with algebraic coordinates near smooth surfaces. *Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2020, vol. 64, no. 1, pp. 7–12 (in Russian). https://doi.org/10.29235/1561-8323-2020-64-1-7-12

В последние годы появилось много новой информации о распределении алгебраических и целых алгебраических чисел. Было доказано, что действительные алгебраические числа при

[©] Бударина Н. В., Диккинсон Д., Берник В. И., 2020

их естественном упорядочивании распределены неравномерно [1]. Было введено понятие регулярности распределения последовательности [2] и авторы этого понятия Бейкер и Шмидт доказали регулярность множества действительных алгебраических чисел. Сейчас уже известна регулярность распределения векторов с действительными алгебраическими сопряженными координатами, что позволяет получать метрические характеристики множеств из R, C, Q_p , которые с заданным порядком приближаются алгебраическими числами. Как правило это размерность Хаусдорфа [3] и доказательство аналога теоремы Хинчина в случае расходимости [4]. Свойство регулярности проявляется только на интервалах и в шарах достаточно большой меры [5].

В 1994 г. Хаксли установил оценки для количества рациональных точек вблизи гладкой кривой [6].

Т е о р е м а 1. Пусть y=f(x) — дважды непрерывная функция, заданная на интервале I, Q>1 — натуральное число, $c_1<\left|f''(x)\right|< c_2$ для $x\in I$. Пусть также $M_f(Q,\gamma)$ — количество рациональных точек $\bar{b}=\left(\frac{p_1}{q},\frac{p_2}{q}\right)$, удовлетворяющих неравенству

$$\left| f\left(\frac{p_1}{q}\right) - \frac{p_2}{q} \right| < Q^{-\gamma}, \quad 0 \le \gamma < 3, \quad \frac{p_1}{q} \in I, \quad 1 \le q \le Q.$$

Тогда при любом $\varepsilon > 0$ и $Q > Q_0(\varepsilon)$ справедлива оценка

$$\#M_f(Q,\gamma) < Q^{3-\gamma+\varepsilon}$$
.

Теорема 1 <u>б</u>ыла обобщена и усилена в [7]. Начиная с [8] проблема обобщается на распределение векторов $\alpha = (\alpha_1, \alpha_2)$ с действительными алгебраическими сопряженными α_1 и α_2 .

Определим множество

$$P_n(Q) = \{ P(x) \in Z : \deg P = n \ge 2, H(P) \le Q \}. \tag{1}$$

В (1) степень полинома $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ равна n, а высота $H = H(P) = \max_{0 \le i \le n} \left| a_i \right|$ не превосходит Q.

Класс $P_n(Q)$ содержит $(2Q+1)^{n+1}$ полиномов P(x). Задача состоит в поисках оценок количества векторов α , таких что α_1 , α_2 – корни $P(x) \in P_n(Q)$, удовлетворяющих неравенству

$$|f(\alpha_1)-\alpha_2|< Q^{-\gamma_1}.$$

Обозначим это количество через $L_f(Q, \gamma_1)$. В [8] была установлена оценка

$$\#L_f(Q, \gamma_1) >> Q^{n+1-\gamma_1}, \quad 0 \le \gamma_1 < 1/2,$$
 (2)

которая в [9] была усилена до $0 \le \gamma_1 < 3/4$, а в [10] получено асимптотическое равенство

$$\#L_f(Q, \gamma_1) >> Q^{n+1-\gamma_1}, \quad 0 \le \gamma_1 < 1.$$
 (3)

Знак A << B означает, что существует число $c_1 = c_1(n)$ такое, что $A < c_1B$. Если A << B и B << A, то как в (3) записываем A << B. Для доказательства оценок (2), (3) в полосу $\left| f(x) - y \right| < Q^{-\gamma_1}$ вписываются квадраты со стороной $c_2 \, Q^{-\gamma_1}$, а для получения оценок сверху около полосы описываются квадраты со стороной $c_3 \, Q^{-\gamma_1}$.

Сообщение посвящено обобщению результата (2) на многомерные пространства. Сформулируем теорему для трехмерного пространства. Пусть $z = \varphi(x, y)$ — непрерывная функция, определенная в квадрате $\Pi = I^2$. Обозначим через $K(Q, \lambda)$ количество решений неравенства

$$\left| \varphi(\alpha_1, \alpha_2) - \alpha_3 \right| < Q^{-\lambda}, \quad 0 \le \lambda < 1/3,$$
 (4)

где $\overline{\beta} = (\alpha_1, \alpha_2, \alpha_3)$ — действительные сопряженные корни полинома $P(x) \in P_n(Q), n \ge 3$.

T е о p е M а 2. Существует величина $c_4 = c_4(n)$ такая, что

$$\#K(Q,\lambda) > c_4 Q^{n+1-\lambda}$$
.

Для доказательства теоремы на первом этапе покажем, как получить оценку снизу для $\#K_1(Q,\lambda)$ – количества решений неравенства (4) в кубе $S(Q,\lambda)$ со стороной $c_5Q^{-\lambda}$. Воспользуемся принципом ящиков Дирихле и для точки $x \in S(Q,\lambda)$ найдем полином $P(x) \in P_n(Q)$, удовлетворяющий системе неравенств

$$|P(x_i)| < c_6 Q^{-\frac{n-2}{3}}.$$
 (5)

При $\bar{x} = (x_1, x_2, x_3) \in I^3$ справедлива оценка $|P'(x_i)| < c_7 Q$.

Л е м м а [11]. Если α_1 ближайший к х корень полинома P(x), то из неравенства $|P(x)| < Q^{-v}$, v > 0, следует неравенство

$$\left|x-\alpha_1\right| < nQ^{-\nu}\left|P'(x)\right|^{-1}.$$

Поэтому, если при некотором $\delta_0 > 0$ справедливо неравенство (5) и

$$|P'(x_i)| > \delta_0 Q, \tag{6}$$

то найдется α_{i1} – корень $P(x_i)$ такой, что

$$\left|x-\alpha_1\right| < nQ^{-\nu} \left|P'(x)\right|^{-1}.$$

и корень α_{i1} действительный. Если неравенство (6) справедливо при любом $1 \le i \le 3$, то мы получим точку $\overline{\beta} = (\alpha_{11}, \alpha_{21}, \alpha_{31})$ с действительными алгебраическими координатами, принадлежащую I^3 .

Пусть $x \in S(Q,\lambda)$. Обозначим через $B_1 \subset S(Q,\lambda)$ множество таких x, для которых хотя бы при одном x_i , $1 \le i \le 3$, верна система неравенств

$$|P(x_i)| < c_6 Q^{-\frac{n-2}{3}}, |P'(x_i)| < \delta_0 Q.$$
 (7)

Докажем, что $\mu B_1 < \frac{1}{4} \mu S(Q, \lambda)$. Нетрудно показать, что при $|P'(x_i)| > Q^{-\frac{n-2}{6}}$ производные в точке x_i и α_{i1} имеют одинаковый порядок и поэтому вместо системы неравенств (7) будем рассматривать систему неравенств

$$|P(x_i)| < c_6 Q^{\frac{n-2}{3}}, |P'(\alpha_{i1})| < 2\delta_0 Q.$$
 (8)

Базой индукции доказательства неравенства (8) будет доказательство аналогичного неравенства для многочленов третьей степени. Поскольку в постановке задачи все три переменные разделены $|x_i - x_j| > \delta_1$, то каждый корень α_{1j} , $1 \le j \le 3$, близок по лемме к своей переменной, и при $Q > Q_0(\delta_1)$ можно считать, что

$$|\alpha_{1j} - \alpha_{2j}| > \delta_1 / 2, |\alpha_{1j} - \alpha_{3j}| > \delta_1 / 2.$$

Это приводит к оценке снизу для производной

$$\left|P'(\alpha_{1j})\right| > \left|a_3\right| \delta_1^2 / 4 \tag{9}$$

и по (9)

$$|a_3| < c\delta_0 Q. \tag{10}$$

Из (9) и (10) получаем

$$|x_i - \alpha_{1j}| < c_7 Q^{-1/3} |a_3|^{-1}$$
 (11)

Неравенство (11) дает следующую оценку меры множества A_2 решений системы неравенств (8) при n=3

$$\mu B_2 < c_8 Q^{-1} \left| a_3 \right|^{-3}. \tag{12}$$

Неравенство (8) справедливо при n=3 для всех точек куба $S(Q,\lambda)$. Возьмем его середину – точку $\overline{d}=(d_1,d_2,d_3)$ и разложим многочлен P(x) в точках d_i в кубе $S(Q,\lambda)$ в ряд Тейлора. Получим из неравенства $|x_i-d_i| \le 0.5c_5\,Q^{-\lambda}$

$$|P(d_i)| < c_8 Q^{-1/3} a_3. \tag{13}$$

Зафиксируем старший коэффициент a_3 и одно из решений (a_{20} , a_{10} , a_{00}) неравенства (13). Если (a_{2i} , a_{1i} , a_{0i}) — еще какое-нибудь решение (13), то для многочлена второй степени

$$R_i(x_i) = P_i(x_i) - P_0(x_i), \quad 0 \le i \le 3,$$

в точке \overline{d} справедлива система неравенств

$$|R_j(d_i)| < 2c_8 Q^{-1/3} a_3.$$
 (14)

Коэффициенты многочлена $R_j(d_i)$ имеют вид $(a_{2j}-a_{20},a_{1j}-a_{10},a_{0j}-a_{00})$. Разрешим систему неравенств (14) по правилу Крамера. Определитель этой системы не зависит от Q и является определителем Вандермонда. Получаем при $|a_3| > c_9 Q^{1/3}$ систему неравенств

$$|a_{2j} - a_{20}| < c_{10}a_3Q^{-1/3}, |a_{1j} - a_{10}| < c_{10}a_3Q^{-1/3}, |a_{0j} - a_{00}| < c_{10}a_3Q^{-1/3},$$

которая имеет не более $2^3 c_{10}^3 a_3^3 Q^{-1}$ решений. Просуммируем оценку (12) по всем полиномам $R_i(x)$, являющимся решением системы неравенств (8). Получим

$$\sum_{R_i} \mu B_2 < c_{11} Q^{-2}$$

И

$$\sum_{b_3} \sum_{R_j} \mu B_2 < 2c_{11}\delta_0 Q^{-1} < \frac{1}{8} \mu S(Q, \lambda),$$

если $\lambda < 1/3$ и $\delta_0 < 2^{-4}c_{11}^{-1}$. Если же $|a_3| < c_9 Q^{1/3}$, то система неравенств (8) имеет не более одного решения. В этом случае оценку (12) надо просуммировать по всем a_3 и с учетом (12) будем иметь

$$\sum_{a_3} \mu B_2 < c_{12} Q^{-1} < \frac{1}{8} \mu S(Q, \lambda)$$

при $\lambda < 1/3$ и достаточном большом Q.

Далее весь диапазон изменения $|P'(\alpha_{i1})|$ в (8) поделим на части и в каждой из них будем сводить систему неравенств (8) к системе неравенств с многочленами степени меньшей n. Когда же это сведение будет невозможно ввиду малости величины $|P'(\alpha_{i1})|$, то можно воспользоваться рассуждениями Спринджука в случае классов второго рода [11] или использовать лемму работы [3].

Из доказанного следует, что в любом кубе $S(Q,\lambda)$ существует множество $B_2 = S(Q,\lambda) \setminus B_1$ с мерой $\mu B_2 > \frac{3}{4} \mu S(Q,\lambda)$ такое, что для любой точки $x_1 \in B_2$ выполняется система неравенств

$$|P(x_i)| < c_6 Q^{-\frac{n-2}{3}}, |P'(\alpha_{i1})| \ge 2\delta_0 Q.$$

По лемме можно построить точку $\beta_1 = (\alpha_1, \alpha_2, \alpha_3)$ такую, что

$$|x_i - \alpha_i| < c_{12}Q^{-\frac{n+1}{3}}.$$
 (15)

Неравенству (15) удовлетворяют точки из куба T_1 с мерой $2^3c_{12}^3Q^{-n-1}$. Исключим куб T_1 из $S(Q,\lambda)$ и найдем точку $\overline{x_2} \in B_2 \setminus T_1$, для которой найдем алгебраическую точку β_2 . Это процесс можно продолжать до тех пор, пока кубами T_j мы не покроем все точки из $S(Q,\lambda)$ с мерой большей $\frac{3}{4}\mu S(Q,\lambda)$. Ясно, что для количества t таких шагов справедлива оценка $t > c_{13}Q^{n+1-3\lambda}$.

Для окончания доказательства впишем в слой около поверхности $z = \varphi(x, y)$ кубы $S(Q, \lambda)$. Их количество равно $c_{14}Q^{2\lambda}$ и поэтому количество алгебраических точек в слое не менее $c_{15}Q^{n+1-\lambda}$.

Список использованных источников

- 1. Koleda, D. On the asymptotics distribution of algebraic number with growing naive height / D. Koleda // Chebyshevskii Sb. 2015. Vol. 16, N 1. P. 191–204. https://doi.org/10.22405/2226-8383-2015-16-1-191-204
- 2. Baker, A. Diophantine approximation and Hausdorff dimension / A. Baker, W. Schmidt // Proc. London Math. Soc. 1970. Vol. s3-21, N 1. P. 1–11. https://doi.org/10.1112/plms/s3-21.1.1
- 3. Берник, В. И. Применение размерности Хаусдорфа в теории диофантовых приближений / В. И. Берник // Acta Arith. 1983. Vol. 42, N 3. P. 219–253. https://doi.org/10.4064/aa-42-3-219-253
- 4. Beresnevich, V. V. On approximation of real numbers by real algebraic numbers / V. V. Beresnevich // Acta Arith. 1999. Vol. 90, N 2. P. 97–112. https://doi.org/10.4064/aa-90-2-97-112
- 5. Берник, В. Распределение действительных алгебраических чисел произвольной степени в коротких интервалах / В. Берник, Ф. Гётце // Изв. РАН. Сер. математ. 2015. Т. 79, № 1. С. 21–42. https://doi.org/10.4213/im8215
- 6. Huxley, M. The rational points close to a curve / M. Huxley // Ann. Scuola Norm. Sup. Pisa. Ser. 1994. Vol. 21, N 3. P. 357–375.
- 7. Diophantine apprpoximation on planar curves and the distribution of rational points / V. V. Beresnevich [et al.] // Ann. of Math. 2007. Vol. 166, N 2. P. 367–426. https://doi.org/10.4007/annals.2007.166.367
- 8. Bernik, V. On algebraic points in the plane near smooth curves / V. Bernik, F. Goetze, O. Kukso // Lith. Math. J. 2014. Vol. 54, N 3. P. 231–251. https://doi.org/10.1007/s10986-014-9241-0
- 9. Bernik, V. On points with algebraically conjugate coordinates to smooth curves [Electronic resource] / V. Bernik, F. Goetze, A. Gusakova. Mode access: https://arxiv.org/pdf/1602.01631.pdf. Date access: 15.08.2018.
- 10. Bernik, V. On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves / V. Bernik, F. Goetze, A. Gusakova // J. Math. Sci. 2017. Vol. 224, N 2. P. 176–198. https://doi.org/10.1007/s10958-017-3404-6
 - 11. Спринджук, В. Г. Проблема Малера в метрической теории чисел / В. Г. Спринджук. Минск, 1967. 184 с.

References

- 1. Koleda D. On the asymptotics distribution of algebraic number with growing naive height. *Chebyshevskii Sbornik*, 2015, vol. 16, no. 1, pp. 191–204. https://doi.org/10.22405/2226-8383-2015-16-1-191-204
- 2. Baker A., Schmidt W. Diophantine approximation and Hausdorff dimension. *Proceedings of the London Mathematical Society*, 1970, vol. s3-21, no. 1, pp. 1–11. https://doi.org/10.1112/plms/s3-21.1.1
- 3. Bernik V. I. Application of Hausdorff dimension in the theory of Diophantine approximations. *Acta Arithmetica*, 1983, vol. 42, no. 3, pp. 219–253. https://doi.org/10.4064/aa-42-3-219-253
- 4. Beresnevich V. V. On approximation of real numbers by real algebraic numbers. *Acta Arithmetica*, 1999, vol. 90, no. 2, pp. 97–112. https://doi.org/10.4064/aa-90-2-97-112
- 5. Bernik V., Goetze F. Distribution of real algebraic numbers of arbitrary degree in short intervals. *Izvestiya: Mathematics*, 2015, vol. 79, no. 1, pp. 18–39. https://doi.org/10.1070/im2015v079n01abeh002732
- 6. Huxley M. The rational points close to a curve. *Annali della Scuola Normale Superiore di Pisa Classe di Scienze, Ser. 4*, 1994, vol. 21, no. 3, pp. 357–375.
- 7. Beresnevich V., Dickinson D., Velani S., Vaughan R. Diophantine apprpoximation on planar curves and the distribution of rational points. *Annals of Mathematics*, 2007, vol. 166, no. 2, pp. 367–426. https://doi.org/10.4007/annals.2007.166.367
- 8. Bernik V., Goetze F., Kukso O. On algebraic points in the plane near smooth curves. *Lithuanian Mathematical Journal*, 2014, vol. 54, no. 3, pp. 231–251. https://doi.org/10.1007/s10986-014-9241-0
- 9. Bernik V., Goetze F., Gusakova A. *On points with algebraic cally conjugate coordinates to smooth curves*. Available at: https://arxiv.org/pdf/1602.01631.pdf (accessed 15 August 2018).
- 10. Bernik V., Goetze F., Gusakova A. On the distribution of points with algebraically conjugate coordinates in a neighborhood of smooth curves. *Journal of Mathematical Sciences*, 2017, vol. 224, no. 2, pp. 176–198. https://doi.org/10.1007/s10958-017-3404-6
 - 11. Sprindzhuk V. G. Mahler's problem in metric number theory. Minsk, 1967. 184 p. (in Russian).

Информация об авторах

Бударина Наталья Викторовна – д-р физ.-мат. наук. Технологический институт (A91 K584, Дублин Роуд, Дандолк, Ирландия). E-mail: buda77@mail.ru.

Диккинсон Детта – канд. наук. Ирландский национальный университет в Мейнуте (Мейнут, Ирландия). E-mail: detta.dickinson@mu.ie.

Берник Василий Иванович — д-р физ.-мат. наук, профессор, гл. науч. сотрудник. Институт математики НАН Беларуси (ул. Сурганова, 11, 220072, Минск, Республика Беларусь). E-mail: bernik.vasili@mail.ru.

Information about the authors

Budarina Nataliya V. – D. Sc. (Physics and Mathematics). Dundalk Institute of Technology (A91 K584, Dublin Road, Dundalk, Ireland). E-mail: buda77@mail.ru.

Dickinson Detta – Ph. D. National University of Ireland (Maynooth, Ireland). E-mail: detta.dickinson@mu.ie.

Bernik Vasiliy I. – D. Sc. (Physics and Mathematics), Professor, Chief researcher. Institute of Mathematics of the National Academy of Sciences of Belarus (11, Surganov Str., 220072, Minsk, Republic of Belarus). E-mail: bernik. vasili@mail.ru.