ISSN 1561-8323 (Print) ISSN 2524-2431 (Online)

ФИЗИКА

PHYSICS

УДК 530.145 https://doi.org/10.29235/1561-8323-2021-65-1-33-39 Поступило в редакцию 17.11.2020 Received 17.11.2020

В. В. Кудряшов, А. В. Баран

Институт физики имени Б. И. Степанова Национальной академии наук Беларуси, Минск, Республика Беларусь

МОДЕЛИРОВАНИЕ КРУГОВЫХ КВАНТОВЫХ ТОЧЕК, ЛОКАЛИЗОВАННЫХ В ДВОЙНЫХ ГЕТЕРОСТРУКТУРАХ

(Представлено членом-корреспондентом Л. М. Томильчиком)

Аннотация. Круговые квантовые точки, локализованные в двойных гетероструктурах, моделируются с помощью аксиально-симметричного гладкого удерживающего потенциала конечной глубины. Для предложенного потенциала нового типа найдены точные волновые функции и дискретные уровни энергии электрона. Исследована зависимость энергетического спектра от параметров потенциала.

Ключевые слова: круговая квантовая точка, удерживающий потенциал, волновая функция, уровни энергии Для цитирования. Кудряшов, В. В. Моделирование круговых квантовых точек, локализованных в двойных гетероструктурах / В. В. Кудряшов, А. В. Баран // Докл. Нац. акад. наук Беларуси. – 2021. – Т. 65, № 1. – С. 33–39. https://doi.org/10.29235/1561-8323-2021-65-1-33-39

Vladimir V. Kudryashov, Aleksandr V. Baran

B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus

MODELING OF CIRCULAR QUANTUM DOTS LOCALIZED IN DOUBLE HETEROSTRUCTURES

(Communicated by Corresponding Member Lev M. Tomilchik)

Abstract. The circular quantum dots localized in the double heterostructures are simulated by means of the axially symmetric smooth confinement potential of finite depth. For the proposed potential of new type, the exact wave functions and the energy levels of electron are found. The dependence of energy spectrum on potential parameters is investigated.

Keywords: circular quantum dot, confinement potential, wave function, energy levels

For citation. Kudryashov V. V., Baran A. V. Modeling of circular quantum dots localized in double heterostructures. *Doklady Natsional'noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus*, 2021, vol. 65, no. 1, pp. 33–39 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-1-33-39

Введение. В двойной гетероструктуре движение электронов ограничено в направлении, перпендикулярном плоскости внутреннего узкозонного слоя, что позволяет говорить о двумерном электронном газе в запирающей квантовой яме. В квантовых точках, находящихся в среднем слое гетероструктуры, движение электрона ограничено еще и в плоскости, а энергетический спектр является дискретным.

Чаще всего теоретически изучаемые нанообъекты являются аксиально-симметричными. Круговые квантовые точки, как правило, моделируются прямоугольным потенциалом с непро-

[©] Кудряшов В. В., Баран А. В., 2021

ницаемыми стенками [1; 2] или параболическим потенциалом [3; 4]. Отсутствие несвязанных состояний при нулевом магнитном поле делает такие модели чрезмерно идеализированными. Более реалистичной моделью является аксиально-симметричная прямоугольная яма конечной глубины [5; 6].

Модель с прямоугольным аксиально-симметричным удерживающим потенциалом конечной глубины, который является разрывной функцией, описывает основные свойства квантовых точек в гетероструктуре, но без достаточного учета их индивидуальных характеристик.

В настоящей работе предлагается использовать для реалистичного моделирования гладкий запирающий потенциал нового типа конечной глубины и ширины с дополнительными параметрами, что позволит корректно воспроизводить свойства различных видов квантовых точек и получить точное аналитическое описание состояний электронов.

Решение уравнения Шрёдингера. Будем моделировать круговую квантовую точку радиуса ρ_0 с помощью гладкого удерживающего аксиально-симметричного потенциала $V(\rho) = V_0 v(r)$, где $V_0 - г$ лубина потенциальной ямы, а функция v(r) зависит от отношения $r = \rho / \rho_0$ следующим образом:

$$v(r) = \begin{cases} 0, & 0 < r < g, \\ v_1(r), & g < r < s, \\ v_2(r), & s < r < 1, \\ 1, & r > 1. \end{cases}$$
(1)

Функции $v_1(r)$ и $v_2(r)$ имеют вид

$$v_1(r) = a \left(r - \frac{g^2}{r} \right)^2, \quad a = \frac{1}{2} \frac{(1+s^2)}{(1-g^2)(s^2 - g^2)},$$
$$v_2(r) = 1 - b \left(r - \frac{1}{r} \right)^2, \quad b = \frac{1}{2} \frac{(g^2 + s^2)}{(1-g^2)(1-s^2)}.$$

Параметры g и s изменяются в пределах 0 < g < 1 и g < s < 1. В точках перегиба r = g, r = s и r = 1 непрерывна функция v(r) и ее первая производная.

На рис. 1 представлена функция v(r) при g = 0,1 для трех значений *s*, которые удобно выразить следующим образом:

$$s = g + (1 - g)j, \quad 0 < j < 1.$$

Пунктирная линия соответствует j = 0,25, сплошная линия -j = 0,5, штриховая линия -j = 0,75.

В полярных координатах ρ , ϕ волновая функция электрона представляется произведением $\psi(\rho, \phi) = e^{im\phi}w(\rho)$, где $m = 0, \pm 1, \pm 2, ...$ Радиальное уравнение Шрёдингера

$$\frac{\hbar^2}{2M_{\rm eff}} \left(\frac{d^2 w}{d\rho^2} + \frac{1}{\rho} \frac{dw}{d\rho} - \frac{m^2 w}{\rho^2} \right) + (E - V(\rho))w = 0,$$

где $M_{\rm eff}$ – эффективная масса электрона, характеризующая его движение в полупроводнике, используя безразмерные величины

$$e = \frac{2M_{\text{eff}}\rho_0^2}{\hbar^2}E, \quad v_0 = \frac{2M_{\text{eff}}\rho_0^2}{\hbar^2}V_0,$$

перепишем в форме

$$\frac{d^2w}{dr^2} + \frac{1}{r}\frac{dw}{dr} - \frac{m^2w}{r^2} + (e - v_0v(r))w = 0.$$
(2)

В области 0 < r < g конечное при $r \rightarrow 0$ решение уравнения (2) выражается через функцию Бесселя [7] с помощью формулы

$$w_1(r) = J_m(\sqrt{er}).$$

В области *g* < *r* < *s* два решения выражаются через вырожденные гипергеометрические функции [7]:

$$w_{2}(r) = r^{B} \exp\left(-\frac{\sqrt{av_{0}}}{2}r^{2}\right) M\left(A, 1+B, \sqrt{av_{0}}r^{2}\right),$$
$$w_{3}(r) = r^{B} \exp\left(-\frac{\sqrt{av_{0}}}{2}r^{2}\right) U\left(A, 1+B, \sqrt{av_{0}}r^{2}\right),$$

где

$$A = \frac{1+B}{2} - \frac{e+2ag^2v_0}{4\sqrt{av_0}}, \quad B = \sqrt{m^2 + ag^4v_0}.$$

В области *s* < *r* < 1 два действительных решения представим следующим образом:

$$w_{4} = \frac{w_{+} + w_{-}}{2}, \quad w_{5} = \frac{w_{+} - w_{-}}{2i},$$
$$w_{\pm}(r) = r^{B_{\pm}} \exp\left(\mp \frac{\sqrt{-bv_{0}}}{2}r^{2}\right) M\left(A_{\pm}, 1 + B_{\pm}, \pm \sqrt{-bv_{0}}r^{2}\right),$$

где

$$A_{\pm} = \frac{1+B_{\pm}}{2} \mp \frac{e-(1+2b)v_0}{4\sqrt{-bv_0}}, \quad B_{\pm} = \pm \sqrt{m^2 - bv_0}.$$

В области r > 1 убывающее решение выражается через модифицированную функцию Бесселя [7]:

$$w_6(r) = K_m(\sqrt{v_0 - er}).$$

Таким образом, получаем радиальную волновую функцию

$$w(r) = \begin{cases} c_1 w_1(r), & 0 < r < g, \\ c_2 w_2(r) + c_3 w_3(r), & g < r < s, \\ c_4 w_4(r) + c_5 w_5(r), & s < r < 1, \\ c_6 w_6(r), & r > 1. \end{cases}$$

Коэффициенты c_i находятся из условия непрерывности функции w(r) и ее первой производной w'(r) в трех точках перегиба r = g, r = s и r = 1. Выполнение этого условия, а также непрерывность потенциала и его первой производной гарантируют непрерывность второй и третьей производных волновой функции. Шесть коэффициентов c_i подчиняются однородной системе шести линейных алгебраических уравнений

$$T(g, s, v_0, m, e)\mathbf{X} = 0, \tag{3}$$

где $\mathbf{X} = \{c_1, c_2, c_3, c_4, c_5, c_6\}$, а матрица *T* имеет вид

$$T(g, s, v_0, m, e) = \begin{pmatrix} w_1(g) & -w_2(g) & -w_3(g) & 0 & 0 & 0 \\ w_1'(g) & -w_2'(g) & -w_3'(g) & 0 & 0 & 0 \\ 0 & -w_2(s) & -w_3(s) & w_4(s) & w_5(s) & 0 \\ 0 & -w_2'(s) & -w_3'(s) & w_4'(s) & w_5'(s) & 0 \\ 0 & 0 & 0 & w_4(1) & w_5(1) & -w_6(1) \\ 0 & 0 & 0 & w_4'(1) & w_5'(1) & -w_6'(1) \end{pmatrix}$$

Тогда зависимость обезразмеренной энергии $e(g, s, v_0, m)$ от трех безразмерных параметров g, s и v_0 определяется трансцендентным уравнением

$$k(g, s, v_0, m, e) = \det T(g, s, v_0, m, e) = 0,$$

решения которого легко находятся численно.

На рис. 2 показана осциллирующая функция k(0, 5, 0, 75, 100, 0, e), которая обращается в ноль при трех значениях e.

Рис. 2. Функция k(0, 5, 0, 75, 100, 0, e)

Fig. 2. Function *k*(0, 5, 0, 75, 100, 0, *e*)

Рис. 3. Радиальные волновые функции Fig. 3. Radial wave functions

Зависимость е от параметров потенциала

	e								
m	g = 0,1			g = 0,5			g = 0,9		
	<i>j</i> = 0,25	<i>j</i> = 0,5	<i>j</i> = 0,75	<i>j</i> = 0,25	<i>j</i> = 0,5	<i>j</i> = 0,75	<i>j</i> = 0,25	<i>j</i> = 0,5	<i>j</i> = 0,75
v ₀ = 100									
0	38,8202	26,3889	21,1503	10,8341	9,78608	9,11427	5,36674	5,2801	5,20242
	99,3459	82,6243	67,4228	53,2947	47,9192	44,1929	28,0087	27,5625	27,158
				99,961	96,3721	90,2509	67,1516	66,1369	65,1934
1	79,2272	55,3224	44,1724	26,9857	24,3233	22,5797	13,5861	13,3676	13,171
			88,9681	80,171	72,5237	66,6922	44,8652	44,1608	43,5166
							90,2195	89,0061	87,8404
2		83,4524	67,3115	47,3649	42,6335	39,4524	24,3249	23,9354	23,5838
					95,56	88,689	63,8864	62,9071	62,0017
v ₀ = 400									
0	69,4065	47,8479	38,9282	13,4826	12,3524	11,6774	5,97095	5,87134	5,78748
	249,296	165,671	131,485	69,572	63,2204	59,3288	31,4112	30,8862	30,4418
	375,034	282,354	224,558	163,395	146,278	135,262	76,9617	75,6723	74,569
		378,655	316,804	277,487	246,404	224,582	142,174	139,789	137,714
			395,955	377,068	348,904	319,918	226,085	222,314	218,952
							326,146	320,908	316,041
1	155,175	104,389	83,8206	34,0134	31,0846	29,3219	15,1512	14,8983	14,685
	325,261	223,663	177,327	110,512	99,814	93,1299	50,6767	49,8288	49,108
	399,235	335,613	270,601	218,174	194,004	177,96	106,147	104,367	102,834
			360,397	331,202	297,452	270,939	180,906	177,875	175,211
					391,82	366,525	273,482	268,966	264,873
							378,369	372,838	367,451
2	245,117	163,247	130,076	60,6681	55,2939	52,0315	27,2025	26,7482	26,3643
	381,222	281,367	223,626	156,043	140,081	129,899	72,855	71,6349	70,5931
		380,645	316,315	273,012	242,31	221,064	138,158	135,84	133,829
			397,324	376,675	346,661	317,362	222,216	218,505	215,206
							322,637	317,426	312,605

Dependence of *e* on potential parameters

Когда значения $e(g, s, v_0, m)$ найдены, не составляет труда получить значения коэффициентов c_i из системы алгебраических уравнений (3) и из стандартного условия нормировки

$$\int_0^\infty w^2(r) r dr = 1$$

Таким образом, построено точное решение радиального уравнения Шрёдингера для электрона в круговой квантовой точке, моделируемой гладким потенциалом (1).

Рис. 3 иллюстрирует непрерывность нормированных радиальных волновых функций при заданных параметрах потенциала g = 0.5, s = 0.75 и $v_0 = 400$ для m = 0, e = 12,3524 (сплошная линия) и для m = 1, e = 99,8140 (штриховая линия).

Наконец, таблица демонстрирует зависимость энергетических уровней от параметров потенциала при следующих значениях квантового числа $m = 0, \pm 1, \pm 2$. Прежде всего заметим, что число дискретных уровней является конечным. Это число возрастает при увеличении параметров v_0 и g и убывает при увеличении модуля m. Уровень энергии понижается при увеличении параметра s.

Заключение. Рассмотренный в настоящей работе модельный удерживающий потенциал обладает следующими свойствами. Потенциал является гладким, имеет конечную глубину и ширину, допускает точное решение уравнения Шредингера. Вместе с тем можно указать и другие варианты потенциала, которым присущи перечисленные свойства. При общей структуре (1) потенциала в области g < r < s наряду с $v_1(r) = a(r - g^2 / r)^2$ можно использовать $v_1(r) = a(1 - g / r)^2$, а в области s < r < 1 можно использовать не только $v_2(r) = 1 - b(r - 1/r)^2$, но и $v_2(r) = 1 - b(1 - 1/r)^2$. Коэффициенты *a* и *b* определяются из требования непрерывности v(r) и v'(r) в точке r = s. Таким образом, получается четыре варианта удерживающего потенциала. Однако описанный в настоящей работе потенциал имеет то преимущество, что для него оказывается точно решаемой задача при включении внешнего однородного магнитного поля. В дальнейшем предполагается использовать предложенный модельный потенциал и при учете влияния спин-орбитальных взаимодействий на состояния электронов в полупроводниковых квантовых точках.

Список использованных источников

1. Bulgakov, E. N. Spin polarization in quantum dots by radiation field with circular polarization / E. N. Bulgakov, A. F. Sadreev // JETP Lett. – 2001. – Vol. 73. – P. 505–509. https://doi.org/10.1134/1.1387515

2. Tsitsishvili, E. Rashba coupling in quantum dots: An exact solution / E. Tsitsishvili, G. S. Lozano, A. O. Gogolin // Phys. Rev. B. – 2004. – Vol. 70, N 11. – Art. 115316 (11 p.). https://doi.org/10.1103/physrevb.70.115316

3. de Sousa, R. Gate control of spin dynamics in III–V semiconductor quantum dots / R. de Sousa, S. Das Sarma // Phys. Rev. B. – 2003. – Vol. 68, N 15. – Art. 153330 (6 p.). https://doi.org/10.1103/physrevb.68.155330

4. Kuan, W. H. Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction / W. H. Kuan, S. C. Tang, W. Xu // J. Appl. Phys. – 2004. – Vol. 95, N 11. – P. 6368–6373. https://doi.org/10.1063/1.1710726

5. Kudryashov, V. V. Electron in a quantum dot with account of the Rashba spin-orbit interaction / V. V. Kudryashov // Proc. of the XIII Intern. School-Conference "Foundations and Advances in Nonlinear Science". – Minsk, 2006. – Vol. 13. – P. 125–130.

6. Chaplik, A. V. Bound states in a two-dimensional short range potential induced by the spin-orbit interaction / A. V. Chaplik, L. I. Magarill // Phys. Rev. Lett. - 2006. - Vol. 96, N 12. - Art. 126402 (4 p.). https://doi.org/10.1103/ physrevlett.96.126402

7. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables / eds. M. Abramovitz, I. A. Stegun. – New York, 1970. – 1060 p.

References

1. Bulgakov E. N., Sadreev A. F. Spin polarization in quantum dots by radiation field with circular polarization. *Journal of Experimental and Theoretical Physics Letters*, 2001, vol. 73, pp. 505–509. https://doi.org/10.1134/1.1387515

2. Tsitsishvili E., Lozano G. S., Gogolin A. O. Rashba coupling in quantum dots: An exact solution. *Physical Review B*, 2004, vol. 70, no. 11, art. 115316 (11 p.). https://doi.org/10.1103/physrevb.70.115316

3. de Sousa R., Das Sarma S. Gate control of spin dynamics in III-V semiconductor quantum dots. *Physical Review B*, 2003, vol. 68, no. 15, art. 153330 (6 p.). https://doi.org/10.1103/physrevb.68.155330

4. Kuan W. H., Tang S. C., Xu W. Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction. *Journal of Applied Physics*, 2004, vol. 95, no. 11, pp. 6368–6373. https://doi.org/10.1063/1.1710726

5. Kudryashov V. V. Electron in a quantum dot with account of the Rashba spin-orbit interaction. *Proceedings of the XIII* International School-Conference "Foundations and Advances in Nonlinear Science", Minsk, 2006, vol. 13, pp. 125–130.

6. Chaplik A. V., Magarill L. I. Bound states in a two-dimensional short range potential induced by the spin-orbit interaction. *Physical Review Letters*, 2006, vol. 96, no. 12, art. 126402 (4 p.). https://doi.org/10.1103/physrevlett.96.126402

7. Abramovitz M., Stegun I. A., eds. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. New York, 1970. 1060 p.

Информация об авторах

Кудряшов Владимир Викторович – канд. физ.-мат. наук, вед. науч. сотрудник. Институт физики им. Б. И. Степанова НАН Беларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: kudryash@dragon. bas-net.by.

Баран Александр Валерьевич – канд. физ.-мат. наук, ст. науч. сотрудник. Институт физики им. Б. И. Степанова НАН Беларуси (пр. Независимости, 68, 220072, Минск, Республика Беларусь). E-mail: a.baran@dragon.bas-net.by.

Information about the authors

Kudryashov Vladimir V. – Ph. D. (Physics and Mathematics), Leading researcher. B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: kudryash@dragon.bas-net.by.

Baran Aleksandr V. – Ph. D. (Physics and Mathematics), Senior researcher. B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus (68, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus). E-mail: a.baran@ dragon.bas-net.by.