ELECTRON TRANSPORT IN ARRAYS OF ALIGNED MULTI-WALLED CARBON NANOTUBES
Abstract
Electrical and magnetotransport in arrays of aligned multi-walled carbon nanotubes are investigated. It is shown that for temperatures below 50 K the 2D weak localization model is the most reliable model for approximation of the experimental data. Electrical resistivity, (1.2–1.5) · 10–3 Ohm · cm, and the temperature dependence of the phase coherence length, Lth ≈ T-p / 2 with p = 0.78, are evaluated from the experimental data in the framework of the 2D weak localization model.
About the Authors
I. V. KOMISSAROVBelarus
I. A. SVITO
Belarus
A. K. FEDOTOV
Belarus
S. L. PRISCHEPA
Belarus
References
1. Electron-phonon scattering in metallic single-walled carbon nanotubes / J. Y. Park [et al.] // Nano Letters. – 2004. – Vol. 4, N 3. – P. 517–520.
2. Luttinger-liquid behaviour in carbon nanotubes / M. Bockrath [et al.] // Nature. – 1999. – Vol. 397, N 18. – P. 598–601.
3. Tomonaga-Luttinger liquid and coulomb blockade in multiwall carbon nanotubes under pressure / M. Monteverde [et al.] // Phys. Rev. Lett. – 2006. – Vol. 97. – P. 176401.
4. Lüttinger Liquid to Al’tshuler − Aronov Transition in Disordered, Many-Channel Carbon Nanotubes / S. Kar [et al.] // ACSNano. – 2009. – Vol. 3, N 1. – P. 207–212.
5. Magnetoresistance of an entangled single-wall carbon-nanotube network / G. T. Kim [et al.] // Phys. Rev. B. – 1998. – Vol. 58. – P. 16064.
6. Interplay between exchange interaction and magnetic anisotropy for iron based nanoparticles in aligned carbon nanotube arrays / A. L. Danilyuk [et al.] // Carbon. – 2014. – Vol. 68. – P. 337–345.
7. Studying disorder in graphite-based systems by Raman spectroscopy / M. A. Pimenta [et al.] // Phys. Chem. Chem. Phys. – 2007. – Vol. 9. – P. 1276–1290.
8. Electrical transport through carbon nanotube junctions created by mechanical manipulation / H. W. Ch. Postma [et al.] // Phys. Rev. B. – 2000. – Vol. 62. – P. R10653(R).
9. Suppression of tunneling into multiwall carbon nanotubes / A. Bachtold [et al.] // Phys. Rev. Lett. – 2001. – Vol. 87. – P. 166801.
10. Rodin, A. S. Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems / A. S. Rodin, M. M. Fogler // Phys. Rev. Lett. – 2010. – Vol. 105. – P. 106801.
11. Шкловский, Б. И. Электронные свойства легированных полупроводников / Б. И. Шкловский, А. Л. Эфрос. – Москва: Наука, 1979.
12. Температурная зависимость электросопротивления и магнетосопротивление компактизарованных нанокомпозитов из многослойных углеродных нанотрубок со структурой вложенных конусов / В. И. Цебро [и др.] // ЖЭТФ. – 1998. – Т. 113, № 6. – С. 2221–2228.
13. Spin-polarized and normal hopping magnetoresistance in heavily doped silicon / A. Fedotov [et al.] // Acta Physica Polonica A. – 2014. – Vol. 125, N 6. – P. 1271–1274.
14. Lee, P. A. Disordered electronic systems / P. A. Lee, T. V. Ramakrishnan // Rev. Mod. Phys. – 1985. – Vol. 57, N 2. – P. 287–337.
15. Electronic properties of graphite nanotubules from galvanomagnetic effects / S. N. Song [et al.] // Phys. Rev. Lett. – 1994. – Vol. 72. – P. 697.
16. Resistivity reduction of boron-doped multiwalled carbon nanotubes synthesized from a methanol solution containing boric acid / S. Ishii [et al.] // Applied Physics Letters. – 2008. – Vol. 92, N 20. – P. 202116.
17. Quantum transport in a multiwalled carbon nanotube / L. Langer [et al.] // Phys. Rev. Lett. – 1996. – Vol. 76, N 3. – P. 479–482.
18. Consistent picture of strong electron correlation from magnetoresistance and tunneling conductance measurements in multiwall carbon nanotubes / N. Kang [et al.] // Phys. Rev. B. – 2002. – Vol. 66. – P. 241403(R).
19. On the elastic properties of carbon nanotube-based composites: modeling and characterization / E. Thostenson [et al.] // J. of Physics D. – 2003. – Vol. 36, N 5. – P. 573–582.
20. Cervenka, J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects / J. Cervenka, M. I. Katsnelson, C. F. J. Flipse // Nature Physics. – 2009. – Vol. 5. – P. 840–844.