Новый подход в приближенном решении задачи Стефана с конвективным граничным условием (Представлено членом-корреспондентом Н.В. Павлюкевичем)
https://doi.org/10.29235/1561-8323-2020-64-4-495-505
Анатацыя
Предложено два новых варианта приближенного аналитического решения однофазной задачи Стефана с конвективным граничным условием на фиксированной границе. Данные решения основаны на применении новых интегральных соотношений, вытекающих из постановочной части задачи и образующих бесконечную последовательность. Показано, что наиболее точным вариантом решения задачи Стефана с конвективным граничным условием является отказ от точного выполнения классического условия Стефана на свободной границе с его заменой на одно из интегральных соотношений. На примере рассмотрения тестовой задачи Стефана с граничным условием Робина, имеющей точное аналитическое решение, показано, что предложенный новый подход в решении задачи является существенно более точным и эффективным по сравнению с известными вариантами интегральной расчетной схемы, в том числе по сравнению с методом интеграла теплового баланса при точном выполнении условия Стефана на свободной границе. В работе представлены решения задачи на основе применения квадратичного и кубического полиномов. В решениях тестовой задачи на основе кубического полинома относительная ошибка определения положения свободной границы составляет тысячные и сотые доли процента. При этом в момент времени t = 1 относительная ошибка для температурного профиля составляет всего εT = 0,075 %.
Аб аўтары
В. КотБеларусь
Спіс літаратуры
1. Alexiades, V. Mathematical Modeling of Melting and Freezing Processes / V. Alexiades, A. D. Solomon. - New York, 1993. - 340 p. https://doi.org/10.1201/9780203749449
2. Cannon, J. R. The One-Dimensional Heat Equation / J. R. Cannon. - California, 1984. - 483 p. https://doi.org/10.1017/cbo9781139086967
3. Gupta, S. C. The Classical Stefan Problem. Basic Concepts, Modelling and Analysis / S. C. Gupta. - Amsterdam, 2003.
4. Lunardini, V. J. Heat Transfer with Freezing and Thawing / V. J. Lunardini. - London, 1991. - 437 p. https://doi.org/10.1016/c2009-0-09960-7
5. Tarzia, D. A. A bibliography on moving-free boundary problems for heat diffusion equation. The Stefan and related problems / D. A. Tarzia // MAT Serie A. - 2000. - Vol. 2. - P. 1-297. https://doi.org/10.26422/mat.a.2000.2.tar
6. Tarzia, D. A. Explicit and Approximated Solutions for Heat and Mass Transfer Problems with a Moving Interface / D. A. Tarzia // Advanced Topics in Mass Transfer. - 2011. - P. 439-484. https://doi.org/10.5772/14537
7. Goodman, T. The heat balance integral methods and its application to problems involving a change of phase / T. Goodman // Trans. ASME. - 1958. - Vol. 90. - P. 335-342.
8. Bollati, J. Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face / J. Bollati, J. Semitiel, D. A. Tarzia // Appl. Math. Comput. - 2018. - Vol. 331. - P. 1-19. https://doi.org/10.1016/j.amc.2018.02.054
9. Mitchell, S. L. Application of standard and refined heat balance integral methods to one-dimensional Stefan problems /S. L. Mitchell, T. Myers // SIAM Rev. - 2010. - Vol. 52, N 1. - P. 57-86. https://doi.org/10.1137/080733036
10. Roday, A. Analysis of phase-change in finite slabs subjected to convective boundary conditions: part I - melting / A. Roday, M. Kazmierczak // Int. Rev. Chem. Eng. - 2009. - Vol. 1. - P. 87-99.
11. Tarzia, D. A. Relationship between Neumann solutions for two-phase Lame-Clapeyron-Stefan problems with convective and temperature boundary conditions / D. A. Tarzia // Therm. Sci. - 2017. - Vol. 21, N 1. - P. 187-197. https://doi.org/10.2298/tsci140607003t
12. Whye-Teong, Ang. A numerical method based on integro-differential formulation for solving a one-dimensional Stefan problem / Ang. Whye-Teong // Numerical Methods for Partial Differential Equations. - 2008. - Vol. 24, N 3. - P. 939949. https://doi.org/10.1002/num.20298
13. Kot, V. A. Integral Method of Boundary Characteristics in Solving the Stefan Problem: Dirichlet Condition // Journal of Engineering Physics and Thermophysics. - 2016. - Vol. 89, N 5. - P. 1289-1314. https://doi.org/10.1007/s10891-016-1499-0
14. Kot, V. A. Solution of the Classical Stefan Problem: Neumann Condition / V. A. Kot // Journal of Engineering Physics and Thermophysics. - 2017. - Vol. 90, N 4. - P. 889-917. https://doi.org/10.1007/s10891-017-1638-2
15. Kot, V. A. Integral Method of Boundary Characteristics: The Dirichlet Condition. Principles / V. A. Kot // Heat Transfer Res. - 2016. - Vol. 47, N 11. - P. 1035-1055. https://doi.org/10.1615/heattransres.2016014882