Effect of proton irradiation on the mechanical, structural, and optical properties of TiAlN coating
https://doi.org/10.29235/1561-8323-2022-66-2-141-147
Abstract
Titanium aluminium nitride (TiAlN) is a promising material for space application as protective, radiation-resistance coatings. During the operation in space such coatings are exposed to the flux of energetic particles. We present the results of the proton irradiation effect on the mechanical, structural, and optical properties of the TiAlN coating deposited by reactive magnetron sputtering. The irradiation with fluence of 5 · 1016 ion/cm2 results in an increase of Young՚s modulus and nanohardness above the superhard level, while a further fluence increase (up to 2 · 1017 ion/cm2 ) results in a decrease of these parameters. Surface smoothing after proton irradiation has been demonstrated by profilometry. It is shown that irradiation with protons results in an increase of specular reflectance. Diffuse reflectance increases to a lesser extent and only after irradiation with relatively low proton fluences ((2–5)· 1016 ion/cm2 ).
About the Authors
I. N. ParkhomenkoBelarus
Parkhomenko Irina N. – Ph. D. (Physics and Mathematics), Leading Researcher
5, Kurchatov Str., 220108, Minsk
L. A. Vlasukova
Belarus
Vlasukova Liudmila A. – Ph. D. (Physics and Mathematics), Head of the Laboratory
5, Kurchatov Str., 220108, Minsk
F. F. Komarov
Belarus
Komarov Fadei F. – Academician, D. Sc. (Physics and Mathematics), Head of the Laboratory
7, Kurchatov Str., 220045, Minsk
S. V. Konstantinov
Belarus
Konstantinov Stanislav V. – Ph. D. (Physics and Mathematics), Senior Researcher
7, Kurchatov Str., 220045, Minsk
V. A. Zaikov
Belarus
Zaikov Valery A. – Senior Lecturer
1, Kurchatov Str., 220045, Minsk
V. V. Pilko
Belarus
Pilko Vladimir V. – Researcher
7, Kurchatov Str., 220045, Minsk
References
1. Yamamoto K., Tatsuhira Y., Iwai Y. The relationship between coating property and solid particle erosion resistance of AIP-deposited TiAlN coatings with different Al contents. Coatings, 2021, vol. 11, no. 8, art. 992 (1–12). https://doi.org/10.3390/coatings11080992
2. Konstantinov S. V., Wendler E., Komarov F. F., Zaikov V. A. Radiation tolerance of nanostructured TiAlN coatings under Ar+ ion irradiation. Surface and Coatings Technology, 2020, vol. 386, art. 125493. https://doi.org/10.1016/j.surfcoat.2020.125493
3. Pelizzo M. G., Corso A. J., Santi G., Hübner R., Garoli D., Doyle D., Lubin P., Cohen A. N., Erlikhman J., Favaro G., Bazzan M., Drobny J., Curreli D., Umansky M. Dependence of the damage in optical metal/dielectric coatings on the energy of ions in irradiation experiments for space qualification. Scientific Reports, 2021, vol. 11, no. 1, art. 3429. https://doi.org/10.1038/s41598-021-82860-7
4. Sznajder M., Seefeldt P., Spröwitz T., Renger J., Kang J. H., Bryant R., Wilkie W. Solar sail propulsion limitations due to hydrogen blistering. Advances in Space Research, 2021, vol. 67, no. 9, pp. 2655–2668. https://doi.org/10.1016/j.asr.2020.06.034
5. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, vol. 19, no. 1, pp. 3–20. https://doi.org/10.1557/jmr.2004.19.1.3
6. Solozhenko V. L., Gregoryanz E. Synthesis of superhard materials. Materials Today, 2005, vol. 8, no. 11, pp. 44–51. https://doi.org/10.1016/S1369-7021(05)71159-7
7. Xiao B., Liu J., Liu F., Zhong X., Xiao X., Zhang T. F., Wang Q. Effects of microstructure evolution on the oxidation behavior and high-temperature tribological properties of AlCrN/TiAlSiN multilayer coatings. Ceramics International, 2018, vol. 44, no. 18, pp. 23150–23161. https://doi.org/10.1016/j.ceramint.2018.09.125
8. García-González L., Garnica-Romo M. G., Hernández-Torres J., Espinoza-Beltrán F. J. A study of TiAlN coatings prepared by rf co-sputtering. Brazilian Journal of Chemical Engineering, 2007, vol. 24, no. 2, pp. 249–257. https://doi.org/10.1590/S0104-66322007000200009
9. Rahman M. M., Jiang Z.-T., Munroe P., Chuah L. S., Zhou Z., Xie Z., Yin C. Y., Ibrahim K., Amri A., Kabir H., Haque Md. M., Mondinos N., Altarawneh M., Dlugogorski B. Z. Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered Tix M1–x–y Ny films. RSC Advances, 2016, vol. 6, no. 43, pp. 36373–36383. https://doi.org/10.1039/c6ra02550a
10. Makuła P., Pacia M., Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV−Vis spectra. Journal of Physical Chemistry Letters, 2018, vol. 9, no. 23, pp. 6814−6817. https://doi.org/10.1021/acs.jpclett.8b02892