Manipulation of the quantum dots photostability using gold nanoparticles
https://doi.org/10.29235/1561-8323-2022-66-2-148-155
Abstract
The effect of plasmonic films containing gold nanoparticles of different shape (nanospheres and nanorods) on the photostability of InP/ZnSe/ZnSeS/ZnS and CdSe/ZnCdS/ZnS quantum dots with core/shell structure has been determined. Gold nanospheres increase the photostability of InP/ZnSe/ZnSeS/ZnS quantum dots when excited by blue LED radiation when reducing the average lifetime of the excited state of quantum dots and, accordingly, when reducing the probability of Auger processes. An increase in the average lifetime of the excited state of CdSe/ZnCdS/ZnS quantum dots in complexes with gold nanorods leads to a decrease in the photostability upon excitation at 449 and 532 nm.
About the Authors
O. S. KulakovichBelarus
Kulakovich Olga S. – Ph. D. (Chemistry), Leading Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
L. I. Gurinovich
Belarus
Gurinovich Leonid I. – Ph. D. (Physics and Mathematics), Senior Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
L. I. Trotsiuk
Belarus
Trotsiuk Liudmila L. – Ph. D. (Chemistry), Senior Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
A. A. Ramanenka
Belarus
Ramanenka Andrey A. – Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
Hongbo Li
China
Hongbo Li – Professor
5, South Zhongguancun Street, Beijing 10008
N. A. Matveevskaya
Ukraine
Matveevskaya Neonolla A. – Ph. D. (Engineering), Senior Researcher
60, Lenin Ave., 61001, Kharkiv
S. V. Gaponenko
Belarus
Gaponenko Sergey V. – Academician, D. Sc. (Physics and Mathematics), Professor
68-2, Nezavisimosti Ave., 220072, Minsk
References
1. Gaponenko S. V., Demir H. V. Applied Nanophotonics. Cambridge, 2018. https://doi.org/10.1017/9781316535868
2. Han C.-Y., Yang H. Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices. Journal of the Korean Ceramic Society, 2017, vol. 54, no. 6, pp. 449–469. https://doi.org/10.4191/kcers.2017.54.6.03
3. Yang X., Zhao D., Leck K. S., Tan S. T., Tang Y. X., Zhao J. L., Demir H. V., Sun X. W. Full visible range covering InP/ ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Advanced Materials, 2012, vol. 24, no. 30, pp. 4180–4185. https://doi.org/10.1002/adma.201104990
4. Yang L., Antanovich A., Prudnikau A., Taniya O. S., Grzhegorzhevskii K. V., Zelenovskiy P., Terpinskaya T., Tang J., Artemyev M. Highly luminescent Zn-Cu-In-S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites. Nanotechnology, 2019, vol. 30, no. 39, art. 395603. https://doi.org/10.1088/1361-6528/ab2aa2
5. Gurinovich L. I., Artem’ev M. V., Lyutich A. A., Gaponenko S. V. Photostability of luminescent water-soluble cadmium selenide nanocrystals with chemical surface modification. Journal of Applied Spectroscopy, 2006, vol. 73, no. 4, pp. 572–575. https://doi.org/10.1007/s10812-006-0120-2
6. Strekal N., Kulakovich O., Belyaev A., Stsiapura V., Maskevich S. Photoluminescence of water-soluble CdSe/ZnS nanoparticles in complexes with cationic and anionic polyelectrolytes. Optics and Spectroscopy, 2008, vol. 104, no. 1, pp. 50–56. https://doi.org/10.1134/s0030400x08010074
7. Kulakovich O., Strekal N., Yaroshevich A., Maskevich S., Gaponenko S., Nabiev I., Woggon U., Artemyev M. Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids. Nano Letters, 2002, vol. 2, no. 12, pp. 1449–1452. https://doi.org/10.1021/nl025819k
8. Strekal N., Kulakovich O., Askirka V., Sveklo I., Maskevich S. Features of the Secondary Emission Enhancement Near Plasmonic Gold Film. Plasmonics, 2009, vol. 4, no. 1, pp. 1–7. https://doi.org/10.1007/s11468-008-9063-1
9. Jin Y., Gao X. Plasmonic fluorescent quantum dots. Nature Nanotechnology, 2009, vol. 4, no. 9, pp. 571–576. https://doi.org/10.1038/nnano.2009.193
10. Ji B., Giovanelli E., Habert B., Spinicelli P., Nasilowski M., Xu X., Lequeux N., Hugonin J.-P., Marquier F., Greffet J.-J., Dubertret B. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nature Nanotechnology, 2015, vol. 10, no. 2, pp. 170–175. https://doi.org/10.1038/nnano.2014.298
11. Kim K.-S., Zakia M., Yoon J., Yoo S. I. Metal-enhanced fluorescence in polymer composite films with Au@Ag@SiO2 nanoparticles and InP@ZnS quantum dots. RSC Advances, 2019, vol. 9, no. 1, pp. 224–233. https://doi.org/10.1039/c8ra08802k
12. Wegner D., Dussert F., Truffier-Boutry D., Benayad A., Beal D., Mattera L., Ling W. L., Carrière M., Reiss P. Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity. Frontiers in Chemistry, 2019, vol. 7, art. 466. https://doi.org/10.3389/fchem.2019.00466
13. Turkevich J., Stevenson P. C., Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951, vol. 11, pp. 55–75. https://doi.org/10.1039/df9511100055
14. Muravitskaya A., Kulakovich O., Adam P.-M., Gaponenko S. Colloidal Silver Films on Polypropylene and Polyethylene. Physica Status Solidi (b), 2018, vol. 255, no. 4, pp. 1700491–1700496. https://doi.org/10.1002/pssb.201700491
15. Gurinovich L. I., Trotsiuk L. L., Kulakovich O. S., Sushko N. I., Demir H. V., Gaponenko S. V. Polarization Properties of Photoluminescence of Anisotropic Polymer Films Containing Aligned Au Nanorods and Semiconductor Nanoparticles of Various Shape. Semiconductors, 2018, vol. 52, no. 16, pp. 2054–2056. https://doi.org/10.1134/s1063782618160108
16. Trotsiuk L., Muravitskaya A., Kulakovich O., Guzatov D., Ramanenka A., Kelestemur Y., Demir H. V., Gaponenko S. Plasmon-enhanced Fluorescence in Gold Nanorod-Quantum Dot Coupled Systems. Nanotechnology, 2020, vol. 31, no. 10, pp. 105201–105211. https://doi.org/10.1088/1361-6528/ab5a0e
17. Lakowicz J. R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, vol. 298, no. 1, pp. 1–24. https://doi.org/10.1006/abio.2001.5377