Physical and chemical properties of Δ3−12 cysteine-depleted cytocrome P450 3A4 with amino acid substitution of S291C
https://doi.org/10.29235/1561-8323-2022-66-2-176-186
Abstract
Cytochrome P450 3A4 (3A4) is highly expressed in the human liver cells and plays a decisive role in the metabolism of xenobiotics, including more than 50 % of medical products. The activity of this enzyme can be regulated at the expression level of genes, as well as at the conformation level of the structure of the protein itself, due to changes in the molecular environment, including due to the interaction with high-molecular effectors. The understanding of the structure changes and the 3A4 dynamics in response to the environmental changes is necessary to predict the changes in the level of its activity that to a considerable extent regulates the body’s homeostasis. To perform in vitro experiments on the structure, dynamics, and protein-ligand/protein interactions of the enzymes by the modern spectral methods, the approach is used, in which the target protein is selectively added with cysteine residues in the given polypeptide chain loci by the protein engineering methods for subsequent labeling with specialized molecular labels. To do this, the human mutant form of membrane-bound (full length) recombinant cytochrome P450 3A4 C58A/C64M/C98A/C239T/C377A/C468S/S291C was obtained. According to the circular dichroism spectroscopy data we established that the introduced mutations do not cause significant changes in the secondary structure of the obtained form 3A4, which shows the preservation of the folding of the peptide chain. The spectral photometric measurements were made to comparatively analyze the changes in the affinity to the ligands of the active center. Moreover, we showed that the testosterone hydroxylase activity in the in vitro reconstructed system for a given mutation form of 3A4 increases many times with respect to the wild form of the enzyme.
Keywords
About the Authors
V. V. BritikovBelarus
Britikov Vladimir V. – Researcher
5/2, Kuprevich Str., 220141, Minsk
E. V. Britikova
Belarus
Britikova Elena V. – Researcher
5/2, Kuprevich Str., 220141, Minsk
E. V. Bocharov
Russian Federation
Bocharov Eduard V. – Ph. D. (Chemistry), Senior Researcher
16/10, Miklukho-Maklai Str., 117997, Moscow
Ya. V. Bershatsky
Russian Federation
Bershatsky Yaroslav V. – Junior Researcher
16/10, Miklukho-Maklai Str., 117997, Moscow
N. V. Kuzmina
Russian Federation
Kuzmina Natalya V. – Ph. D. (Physics and Mathematics), Researcher
33/2, Leninsky Ave., 119071, Moscow
K. M. Boyko
Russian Federation
Boyko Konstantin M. – Ph. D. (Вiology), Senior Researcher
31/4, Leninsky Ave., 119071, Moscow
S. A. Usanov
Belarus
Usanov Sergey A. – Corresponding Member, D. Sc. (Chemistry), Professor
5/2, Kuprevich Str., 220141, Minsk
References
1. Guengerich F. P. Human cytochrome P450 enzymes. Cytochrome P450. Springer, 2015, pp. 597–607.
2. Yano J. K., Wester M. R., Schoch G. A., Griffin K. J., Stout C. D., Johnson E. F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. Journal of Biological Chemistry, 2004, vol. 279, no. 37, pp. 38091–38094. https://doi.org/10.1074/jbc.c400293200
3. Ekroos M., Sjögren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. Proceedings of the National Academy of Sciences, 2006, vol. 103, no. 37, pp. 13682–13687. https://doi.org/10.1073/pnas.0603236103
4. Sevrioukova I. F., Poulos T. L. Dissecting cytochrome P450 3A4–ligand interactions using ritonavir analogues. Biochemistry, 2013, vol. 52, no. 26, pp. 4474–4481. https://doi.org/10.1021/bi4005396
5. Brändén G., Sjögren T., Schnecke V., Xue Y. Structure-based ligand design to overcome CYP inhibition in drug discovery projects. Drug Discovery Today, 2014, vol. 19, no. 7, pp. 905–911. https://doi.org/10.1016/j.drudis.2014.03.012
6. Sevrioukova I. F., Poulos T. L. Anion-dependent stimulation of CYP3A4 monooxygenase. Biochemistry, 2015, vol. 54, no. 26, pp. 4083–4096. https://doi.org/10.1021/acs.biochem.5b00510
7. Šrejber M., Navrátilová V., Paloncýová M., Bazgier V., Berka K., Anzenbacher P., Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. Journal of Inorganic Biochemistry, 2018, vol. 183, pp. 117–136. https://doi.org/10.1016/j.jinorgbio.2018.03.002
8. Hackett J. C. Membrane-embedded substrate recognition by cytochrome P450 3A4. Journal of Biological Chemistry, 2018, vol. 293, no. 11, pp. 4037–4046. https://doi.org/10.1074/jbc.ra117.000961
9. Su X. C., Huber T., Dixon N. E., Otting G. Site‐specific labelling of proteins with a rigid lanthanide‐binding tag. ChemBioChem, 2006, vol. 7, no. 10, pp. 1599–1604. https://doi.org/10.1002/cbic.200600142
10. Herath I. D., Breen C., Hewitt S. H., Berki T. R., Kassir A. F., Dodson C., Judd M., Jabar S., Cox N., Otting G., Butler S. J. A Chiral Lanthanide Tag for Stable and Rigid Attachment to Single Cysteine Residues in Proteins for NMR, EPR and Time‐Resolved Luminescence Studies. Chemistry – A European Journal, 2021, vol. 27, no. 51, pp. 13009–13023. https://doi.org/10.1002/chem.202101143
11. Ménard A., Huang Y., Karam P., Cosa G., Auclair K. Site-specific fluorescent labeling and oriented immobilization of a triple mutant of CYP3A4 via C64. Bioconjugate Chemistry, 2012, vol. 23, no. 4, pp. 826–836. https://doi.org/10.1021/bc200672s
12. Polic V., Auclair K. Allosteric activation of cytochrome P450 3A4 via progesterone bioconjugation. Bioconjugate Chemistry, 2017, vol. 28, no. 4, pp. 885–889. https://doi.org/10.1021/acs.bioconjchem.6b00604
13. Sevrioukova I. F. High-level production and properties of the cysteine-depleted cytochrome P450 3A4. Biochemistry, 2017, vol. 56, no. 24, pp. 3058–3067. https://doi.org/10.1021/acs.biochem.7b00334
14. Tsalkova T. N., Davydova N. Y., Halpert J. R., Davydov D. R. Mechanism of interactions of α-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Biochemistry, 2007, vol. 46, no. 1, pp. 106–119. https://doi.org/10.1021/bi061944p
15. Davydov D. R., Davydova N. Y., Tsalkova T. N., Halpert J. R. Effect of glutathione on homo-and heterotropic cooperativity in cytochrome P450 3A4. Archives of Biochemistry and Biophysics, 2008, vol. 471, no. 2, pp. 134–145. https://doi.org/10.1016/j.abb.2008.01.001
16. Davydov D. R., Rumfeldt J. A., Sineva E. V., Fernando H., Davydova N. Y., Halpert J. R. Peripheral ligand-binding site in cytochrome P450 3A4 located with fluorescence resonance energy transfer (FRET). Journal of Biological Chemistry, 2012, vol. 287, no. 9, pp. 6797–6809. https://doi.org/10.1074/jbc.m111.325654
17. Sineva E. V., Rumfeldt J. A., Halpert J. R., Davydov D. R. A large-scale allosteric transition in cytochrome P450 3A4 revealed by luminescence resonance energy transfer (LRET). PLoS One, 2013, vol. 8, no. 12, art. e83898. https://doi.org/10.1371/journal.pone.0083898
18. Davydov D. R., Davydova N. Y., Sineva E. V., Halpert J. R. Interactions among cytochromes P450 in microsomal membranes: oligomerization of cytochromes P450 3A4, 3A5, and 2E1 and its functional consequences. Journal of Biological Chemistry, 2015, vol. 290, no. 6, pp. 3850–3864. https://doi.org/10.1074/jbc.m114.615443
19. Davydov D. R., Yang Z., Davydova N., Halpert J. R., Hubbell W. L. Conformational mobility in cytochrome P450 3A4 explored by pressure-perturbation EPR spectroscopy. Biophysical Journal, 2016, vol. 110, no. 7, pp. 1485–1498. https://doi.org/10.1016/j.bpj.2016.02.026
20. Porath J., Olin B. Immobilized metal affinity adsorption and immobilized metal affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry, 1983, vol. 22, no. 7, pp. 1621–1630. https://doi.org/10.1021/bi00276a015
21. Morrison J. F. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochimica et Biophysica Acta (BBA) – Enzymology, 1969, vol. 185, no. 2, pp. 269–286. https://doi.org/10.1016/0005-2744(69)90420-3
22. Gillam E. M., Baba T., Kim B. R., Ohmori S., Guengerich F. P. Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme. Archives of Biochemistry and Biophysics, 1993, vol. 305, no. 1, pp. 123–131. https://doi.org/10.1006/abbi.1993.1401
23. Case D. A., Cerutti D., Cheateham T., Darden T., Duke R., Homeyer N. AMBER16 package. San Francisco, 2016.
24. Jo S., Kim T., Iyer V. G., Im W. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 2008, vol. 29, no. 11, pp. 1859–1865. https://doi.org/10.1002/jcc.20945
25. Frank D. J., Denisov I. G., Sligar S. G. Analysis of heterotropic cooperativity in cytochrome P450 3A4 using α-naphthoflavone and testosterone. Journal of Biological Chemistry, 2011, vol. 286, no. 7, pp. 5540–5545. https://doi.org/10.1074/jbc.m110.182055