Creating the рH-sensitive corrosion-inhibiting container structures based on the azole-intercalated molybdenum oxide particles with oligooxometalate shell
https://doi.org/10.29235/1561-8323-2022-66-3-287-293
Abstract
The container structures consisting of the core made of layered molybdenum oxide intercalated with 3-amono-1,2,4-triazole (it behaves as the corrosion inhibitor) capped with the shell made of polymerized tungsten oxide were synthesized employing the polycondensation of oxocompounds. It is shown that in the acid (pH < 5.5) and alkali (pH > 8.5) media, the coating continuity appears to be broken reversibly, which facilitates the emission of the encapsulated compounds from the containers. The intrinsic redox activity inherent into the oligooxometalate shell permits one to immobilize the synthesized containers by co-precipitation with galvanic nickel, whereas the possibility to open the container as a result of local pH value variations accompanying the corrosion process ensures the autonomic corrosion protection of the resultant metal-matrix coatings.
About the Authors
A. S. LogvinovichBelarus
Logvinovich Alexander S. – Ph. D. (Chemistry), Associate Professor
4, Nezavisimosti Ave., 220050, Minsk
T. V. Sviridova
Belarus
Sviridova Tatiana V. – D. Sc. (Chemistry), Professor
4, Nezavisimosti Ave., 220050, Minsk
E. V. Skorb
Russian Federation
Skorb Ekaterina V. – Ph. D. (Chemistry), Associate Professor, Director. Infochemistry Scientific Center
9, Lomonosov Str., St. Petersburg, 191002
D. V. Sviridov
Belarus
Sviridov Dmitry V. – Corresponding Member, D. Sc. (Chemistry), Professor, Dean of the Faculty
4, Nezavisimosti Ave., 220050, Minsk
V. E. Agabekov
Belarus
Agabekov Vladimir E. – Academician, D. Sc. (Chemistry), Professor, Honorary Director
36, F. Skorina Str., 220141, Minsk
References
1. Nazeer A. A., Madkour M. Potential use of smart coatings for corrosion protection of metals and alloys: A review. Journal of Molecular Liquids, 2018, vol. 253, pp. 11–22. https://doi.org/10.1016/j.molliq.2018.01.027
2. Shchukin D. G., Zheludkevich M., Yasakau K., Lamaka S., Ferreira M. G. S., Mohwald H. Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Advanced Materials, 2006, vol. 18, no. 13, pp. 1672–1678. https://doi.org/10.1002/adma.200502053
3. Zheludkevich M. L., Serra R., Montemor M. F., Ferreira M. G. Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors. Electrochemistry Communcations, 2005, vol. 7, no. 8, pp. 836–840. https://doi.org/10.1016/j.elecom.2005.04.039
4. PoОals & Interfaces, 2009, vol. 1, no. 10, pp. 2353–2362. https://doi.org/10.1021/am900495r
5. Yang S., Wang J., Mao W., Zhang D., Guo Y., Song Y., Wang J.-P., Li G. L. pH-Responsive zeolitic imidazole framework nanoparticles with high active inhibitor content for self-healing anticorrosion coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, vol. 555, pp. 18–26. https://doi.org/10.1016/j.colsurfa.2018.06.035
6. Shchukina E., Grigoriev D., Sviridova T., Shchukin D. Comparative study of the effect of halloysite nanocontainers on autonomic corrosion protection of polyepoxy coatings on steel by salt-spray tests. Progress in Organic Coatings, 2017, vol. 108, pp. 84–89. https://doi.org/10.1016/j.porgcoat.2017.03.018
7. Malki Alaoui L., Hammouti B., Bellaouchou A., Benbachir A., Guenbour A., Kertit S. Corrosion inhibition and adsorption properties of 3-amino-1,2,3-triazole on mild steel in H3PO4. Pharmaceutical Chemistry, 2011, vol. 3, pp. 353–360.
8. Logvinovich A. S., Sviridova T. V., Konstantinova E. A., Kokorin A. I., Sviridov D. V. Solvothermally-derived MoO3-benzotriazole hybrid structures for nanocontainer depot systems. New Journal of Chemistry, 2020, vol. 44, no. 26, pp. 11131–11136. https://doi.org/10.1039/d0nj02326d
9. Konstantinova E. A., Kokorin A. I., Logvinovich A. S., Sviridova T. V., Degtyarev E. N., Sviridov D. V. EPR Study on the intercalation of azoles into transition metal oxides. Applied Magnetic Resonance, 2020, vol. 51, no. 9–10, pp. 1079–1092. https://doi.org/10.1007/s00723-020-01205-1
10. Lowenheim F. A., Davis J. Modern electroplating. Journal of Electrochemical Society, 1974, vol. 121, no. 12, pp. 397C. https://doi.org/10.1149/1.2402361
11. Sviridova T. V., Stepanova L. I., Sviridov D. V. Nano- and microcrystals of molybdenum trioxide and metal–matrix composites on their basis. Ortiz M. [et al.], ed. Molybdenum: Characteristics, Production and Applications. New York, 2012, pp. 147–179.
12. Sukhorukov G. B., Antipov A. A., Voight A., Donath E., Mohwald H. pH-Controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromolecular Rapid Communications, 2001, vol. 22, no. 1, pp. 44–46. https://doi.org/10.1002/1521-3927(20010101)22:1%3C44::aid-marc44%3E3.0.co;2-u
13. Sviridova T. V., Sadovskaya L. Y., Shchukina E. M., Logvinovich A. S., Shchukin D. G., Sviridov D. V. Nanoengineered thin-film TiO2/h-MoO3 photocatalysts capable to accumulate photoinduced charge. Journal of Photochemistry and Photobiology A: Chemistry, 2016, vol. 327, pp. 44–50. https://doi.org/10.1016/j.jphotochem.2016.04.018
14. Sviridova T. V., Stepanova L. I., Sviridov D. V. Electrochemical synthesis of Ni–MoO3 composite films: redox-mediated mechanism of electrochemical growth of metal–matrix composite. Journal of Solid State Electrochemistry, 2012, vol. 16, no. 12, pp. 3799–3803. https://doi.org/10.1007/s10008-012-1816-2
15. Sviridova T. V., Logvinovich A. S., Sviridov D. V. Electrochemical growing of Ni–MoO3 nanocomposite coatings via redox mechanism. Surface and Coatings Technology, 2017, vol. 319, pp. 6–11. https://doi.org/10.1016/j.surfcoat.2017.03.041