Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Analysis of antimicrobial metabolites of bacteria Bacillus amyloliquefaciens BIM B-1125 – the basis of Baсto-health biological preparation

https://doi.org/10.29235/1561-8323-2022-66-3-321-329

Abstract

Antimicrobial metabolites of bacterial strain B. amyloliquefaciens BIM B-1125, the basis of Bacto-health preparation, demonstrating antagonism against the representatives of the opportunistic microbiota of valuable fish species, were isolated and characterized. Extracellular localization of antimicrobial compounds was established; their stability is shown in the temperature range of 50–100 °С and in the pH range of 2–10. The lipopeptide nature of antimicrobial metabolites was shown using thin layer chromatography. The mass spectrometric analysis of the active fraction confirmed the production of lipopeptide metabolites belonging to the iturin and surfactin families (iturin A, iturin A4, iturin A6-A7 isomers, surfactin A, surfactin C, and surfactin B isomers).

About the Authors

K. V. Kantor
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Kantor Karina V. – Researcher

2, Kuprevich Str., 220141, Minsk



I. A. Proskurnina
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Proskurnina Irina A. – Head of the Sector

2, Kuprevich Str., 220141, Minsk



N. V. Sverchkova
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Sverchkova Natalia V. – Ph. D. (Biology), Leading Researcher.

2, Kuprevich Str., 220141, Minsk



E. I. Kolomiets
Institute of Microbiology of the National Academy of Sciences of Belarus
Belarus

Kolomiets Emilia I. – Academician, D. Sc. (Biology), Professor, Chief Researcher

2, Kuprevich Str., 220141, Minsk



References

1. Ben-Hong Xu, Zhi-Wei Ye, Qian-Wang Zheng, Tao Wei, Jun-Fang Lin, Li-Qiong Guo. Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech, 2018, vol. 8, no. 10. https://doi.org/10.1007/s13205-018-1443-4

2. Sumi C. D., Yang B. W., Yeo I.-C., Hahm Y. T. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 2015, vol. 61, no. 2, pp. 93–103. https://doi.org/10.1139/cjm-2014-0613

3. Sutyak K. E., Wirawan R. E., Aroutcheva A. A., Chikindas M. L. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. Journal of Applied Microbiology, 2008, vol. 104, no. 4, pp. 1067–1074. https://doi.org/10.1111/j.1365-2672.2007.03626.x

4. Tran C., Cock I. E., Chen X., Feng Y. Antimicrobial Bacillus: metabolites and their mode of action. Antibiotics, 2022, vol. 11, no. 1, p. 88. https://doi.org/10.3390/antibiotics11010088

5. Yoo J.-S., Zheng C.-J., Lee S., Kwak J.-H., Kim W.-G. Macrolactin N, a new peptide deformylase inhibitor produced by Bacillus subtilis. Bioorganic & Medicinal Chemistry Letters, 2006, vol. 16, no. 18, pp. 4889–4892. https://doi.org/10.1016/j.bmcl.2006.06.058

6. Zhao P., Xue Y., Gao W., Li J., Zu X., Fu D., Bai X., Zuo Y., Hu Z., Zhang F. Bacillaceae-derived peptide antibiotics since 2000. Peptides, 2018, vol. 101, pp. 10–16. https://doi.org/10.1016/j.peptides.2017.12.018

7. Malviya D., Sahu P. K., Singh U. B., Paul S., Gupta A., Gupta A. R., Singh S., Kumar M., Paul D., Rai J. P., Singh H. V., Brahmaprakash G. P. Lesson from Ecotoxity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. International Journal of Environmental Research and Public Health, 2020, vol. 17, no. 4, p. 1434. https://doi.org/10.3390/ijerph17041434

8. Ma Y., Kong Q., Qin C., Chen Y., Chen Y., Lv R., Zhou G. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC-ESI-MS/MC. AMB Express, 2016, vol. 6, no. 1, p. 79. https://doi.org/10.1186/s13568-016-0252-6

9. Gao X.-Y., Liu Y., Miao L.-L., Li E.-W., Sun G., Liu Y., Liu Z.-P. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4. Applied Microbiology and Biotechnology, 2017, vol. 101, no. 9, pp. 3759–3768. https://doi.org/10.1007/s00253-017-8095-x

10. Xu H.-M., Rong Y.-J., Zhao M.-X., Song B., Chi Z.-M. Antibacterial activity of the lipopeptides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals. Applied Microbiology and Biotechnology, 2014, vol. 98, no. 1, pp. 127–136. https://doi.org/10.1007/s00253-013-5291-1

11. Kantor K. V., Proskurnina I. A., Sverchkova N. V., Romanovskaya T. V., Kolomiets E. I. Enzymatic activity of the strain Bacillus amyloliquefaciens BIM B-1125 – an antagonist of pathogenic microflora of valuable fish species. Biotehnologii mikroorganizmov: Materialy Mezhdunarodnoj nauchno-prakticheskoj konferencii [Biotechnologies of microorganisms: Materials of the International Scientific-Practical Conference]. Minsk, 2019, pp. 74–77 (in Russian).

12. Ramachandran R., Chalasani A. G., Lal R., Roy U. A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1. Scientific World Journal, 2014, vol. 2014, 10 p. https://doi.org/10.1155/2014/968487

13. Perumal V., Yao Z., Kim J. A., Kim H. J., Kim J. H. Purification and Characterization of a Bacteriocin, BacBS2, produced by Bacillus velezensis BS2 isolated from Meongge Jeotgal. Journal of Microbiology and Biotechnology, 2019, vol. 29, no. 7, pp. 1033–1042. https://doi.org/10.4014/jmb.1903.03065

14. Phulpoto I. A., Yu Z., Hu B., Wang Y., Ndayisenga F., Li J., Liang H., Qazi M. A. Production and characterization of surfactin-like biosurfactant by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microbial Cell Factories, 2020, vol. 19, no. 1, art. 145. https://doi.org/10.1186/s12934-020-01402-4

15. Yánez-Mendizábal V., Zeriouh H., Viñas I., Torres R., Usall J., de Vicente A., Pérez-García A., Teixidó N. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 2012, vol. 132, no. 4, p. 609–619. https://doi.org/10.1007/s10658-011-9905-0

16. Melent’ev A. I., Kurchenko V. P., Leont’ev V. N., Galimzjanova N. F., Kuz’mina L. Ju., Gilvanova E. A., Usanov N. G., Boiko T. F., Semenova E. A., Aktuganov G. E. Isolation and preliminary characterization of antifungal compounds of Bacillus subtilis strain IB-54, an antagonist of soil micromycetes. Trudy BGU [Proceedings of BSU], 2010, vol. 5, no. 1, pp. 200–209 (in Russian).


Review

Views: 410


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)