1. Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15 / Ben-Hong Xu [et al.] // 3 Biotech. - 2018. - Vol. 8, N 10. https://doi.org/10.1007/s13205-018-1443-4
2. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics / C. D. Sumi [et al.] // Can. J. Microbiol. - 2015. - Vol. 61, N 2. - P. 93-103. https://doi.org/10.1139/cjm-2014-0613
3. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens / K. E. Sutyak [et al.] // J. Applied Microbiol. - 2008. - Vol. 104, N 4. - P. 1067-1074. https://doi.org/10.1111/j.1365-2672.2007.03626.x
4. Antimicrobial Bacillus: metabolites and their mode of action / C. Tran [et al.] // Antibiotics. - 2022. - Vol. 11, N 1. - P. 88. https://doi.org/10.3390/antibiotics11010088
5. Macrolactin N, a new peptide deformylase inhibitor produced by Bacillus subtilis / J. S. Yoo [et al.] // Bioorg. Med. Chem. Lett. - 2006. - Vol. 16, N 18. - P. 4889-4892. https://doi.org/10.1016/j.bmcl.2006.06.058
6. Bacillaceae-derived peptide antibiotics since 2000 / P. Zhao [et al.] // Peptides. - 2018. - Vol. 101. - P. 10-16. https://doi.org/10.1016/j.peptides.2017.12.018
7. Lesson from Ecotoxity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection / D. Malviya [et al.] // Int. J. Environ. Res. Public Health. - 2020. - Vol. 17, N 4. - P. 1434. https://doi.org/10.3390/ijerph17041434
8. Identification of lipopeptides in Bacillus megaterium by two-step ultrafiltration and LC-ESI-MS/MC / Y. Ma [et al.] // AMB Express. - 2016. - Vol. 6, N 1. - P. 79. https://doi.org/10.1186/s13568-016-0252-6
9. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4 / X.-Y. Gao [et al.] // Appl. Microbiol. and Biotechnol. - 2017. - Vol. 101, N 9. - P. 3759-3768. https://doi.org/10.1007/s00253-017-8095-x
10. Antibacterial activity of the lipopeptides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals / H. M. Xu [et al.] // Appl. Microbiol. Biotechnol. - 2014. - Vol. 98, N 1. - P. 127-136. https://doi.org/10.1007/s00253-013-5291-1
11. Ферментативная активность штамма Bacillus amyloliquefaciens БИМ В-1125 - антагониста патогенной микрофлоры ценных видов рыб / К. В. Кантор [и др.] // Биотехнологии микроорганизмов: материалы Междунар. науч.практ. конф., Минск, БГУ, 27-29 нояб. 2019 г. - Минск, 2019. - С. 74-77.
12. A Broad-Spectrum Antimicrobial Activity of Bacillus subtilis RLID 12.1 / R. Ramachandran [et al.] // Scientific World Journal. - 2014. - Vol. 2014. - 10 p. https://doi.org/10.1155/2014/968487
13. Purification and Characterization of a Bacteriocin, BacBS2, produced by Bacillus velezensis BS2 isolated from Meongge Jeotgal / V. Perumal [et al.] // J. Microbiol. Biotechnol. - 2019. - Vol. 29, N 7. - P. 1033-1042. https://doi.org/10.4014/jmb.1903.03065
14. Production and characterization of surfactin-like biosurfactant by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation / I. A. Phulpoto [et al.] // Microbial. Cell Factories. - 2020. - Vol. 19, N 1. - Art. 145. https://doi.org/10.1186/s12934-020-01402-4
15. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides / V. Yanez-Mendizabal [et al.] // Eur. J. Plant. Pathol. - 2012. - Vol. 132, N 4. - P. 609-619. https://doi.org/10.1007/s10658-011-9905-0
16. Выделение и предварительная характеристика антигрибных соединений штамма Bacillus subtilis ИБ-54 - антагониста почвенных микромицетов / А. И. Мелентьев [и др.] // Тр. БГУ. - 2010. - Т. 5, ч. 1. - С. 200-209.