Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Crystal structure of the system of (1-y)(BiFeO3)-y(Ba1-xSrxTiO3) solid solution.

https://doi.org/10.29235/1561-8323-2022-66-4-397-403

Abstract

The crystal structure of the system of (1-y)(BiFeO3)-y(Ba1-xSrxTiO3)  (0 ≤ x ≤1; 0,2 ≤ y ≤ 0,4) solid solutions was studied based on the X-ray diffraction data and the scanning electron microscopy results. The obtained results have allowed determining the concentration ranges of a single-phase structural state, as well as the regions of coexistence of two structure phases. It is shown that an increase in the concentration of the dopant ions leads to a decrease in rhombohedral distortions. The structure of the compounds with y = 0.25-0.33 is characterized by the coexistence of the rhombohedral and pseudocubic phases. Further chemical doping leads to the transformation of the structure; it becomes single-phase and has a cubic symmetry.  Splitting of the reflections specific to the rhombohedral phase completely disappears for the compounds with y = 0.35; 0.40. Particular attention is paid to the analysis of the structure of solid solutions in the region of the concentration phase transition. The evolution of crystallite morphology was determined as a function of the type of structure distortions and dopants concentration.

About the Authors

D. V. Zheludkevich
Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Zheludkevich Dmitry V. – Junior Researcher. 

19, P. Brovka Str., 220072, Minsk



S. I. Latushko
Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Latushko Sergei I. – Junior Researcher. 

19, P. Brovka Str., 220072, Minsk

 



M. V. Silibin
National Research University of Electronic Technology “MIET”
Russian Federation

Silibin Maxim V. – Ph. D. (Engineering), Assistant Professor. 



A. N. Chobot
Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Chobot Aleksandra N. – Ph. D. (Physics and Mathematics), Senior Researcher. 

19, P. Brovka Str., 220072, Minsk



A. V. Sysa
National Research University of Electronic Technology “MIET”
Russian Federation

Sysa Artem V. – Ph. D. (Engineering), Senior Researcher. 

1, Shokin sq., 124498, Zelenograd



K. N. Neklyudov
National Research University of Electronic Technology “MIET”
Russian Federation

Neklyudov Kapiton N. – Junior Researcher.

1, Shokin sq., 124498, Zelenograd



G. M. Chobot
Belarusian State Agrarian Technical Universit
Belarus

Chobot Gennadii M. – Ph. D. (Physics and Mathematics), Assistant Professor. 

99, Nezavisimosti Ave., 220023, Minsk



D. V. Karpinsky
Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus
Belarus

Karpinsky Dmitry V. – Ph. D. (Physics and Mathematics), Head of the Laboratory.

19, P. Brovka Str., 220072, Minsk



References

1. Haumont R., Kornev I. A., Lisenkov S., Bellaiche L., Kreisel J., Dkhil B. Phase stability and structural temperature dependence in powdered multiferroic BiFeO3. Physical Review B, 2008, vol. 78, no. 13, art. 134108. https://doi.org/10.1103/physrevb.78.134108

2. Kim S., Khanal G. P, Nam H.-W., Fujii I., Ueno S., Moriyoshi C., Kuroiwa Y., Wada S. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. Journal of Applied Physics, 2017, vol. 122, no. 16, pp. 164105. https://doi.org/10.1063Z1.4999375

3. Karpinsky D. V., Troyanchuk I. O., Tovar M., Sikolenko V., Efimov V., Efimova E., Shur V. Ya., Kholkin A. L. Temperature and Composition-Inducet Structural Transitions in Bi11–xLa(Pr)xFeO3 ceramics. Journal of the American Ceramic Society, 2014, vol. 97, no. 8, pp. 2631-2638. https://doi.org/10.1111/jace.12978

4. Arnold D. C., Knight K. S., Catalan G., Redfern S. A., Scott J. F., Lightfoot P, Morrison F. D., The β-to-γ Transition in BiFeO3: A Powder Neutron Diffraction Study. Advanced Functional Materials, 2010, vol. 20, no. 13, pp. 2116-2123. https://doi.org/10.1002/adfm.201000118

5. Kirsch A., Murshed M. M., Kirkhame M. J., Huq A.., Litterst F. J., Gesing T. M. Temperature-dependent structural and spectroscopic studies of (Bi1-^Fe^)FeO3. Journal of Physical Chemistry C, 2018, vol. 122, no. 49, pp. 28280-28291. https://doi. org/10.1021/acs.jpcc.8b05740

6. Catalan G., Scott J. F. Physics and Applications of Bismuth Ferrite. Advanced Materials, 2009, vol. 21, no. 24, pp. 24632485. https://doi.org/10.1002/adma.200802849

7. Selbach S. M., Tybell T., Einarsrud M. A., Grande T. The Ferroic Phase Transitions of BiFeO3. Advanced Materials, 2008, vol. 20, no. 19, pp. 3692-3696. https://doi.org/10.1002/adma.200800218

8. Karpinsky D. V., Troyanchuk I. O., Mantytskaya O. S., Khomchenko V. A., Kholkin A. L. Structural Stability and Magnetic Properties of Bi11–xLa(Pr)xFeO3 Solid Solutions. Solid State Communications, 2011, vol. 151, no. 22, pp. 1686-1689. https://doi.org/10.1016/j.ssc.2011.08.002

9. Lee S. H., Tian G., Kim T. C., Jung H. K., Choi J. W., Walker F. J., Ahn C. H., Ross C. A., Kim D. H. Integration of sputter-deposited multiferroic CoFe2O4-BiFeO3 nanocomposites on conductive La07Sr03MnO3 electrodes Seung. Nanotechnology, 2019, vol. 30, no. 10, pp. 105601. https://doi.org/10.1088/1361-6528/aaf7cd

10. Priya A. S., Banu S. I. B., Anwar S. Investigation of multiferroic properties of doped BiFeO3-BaTiO3 composite ceramics. Materials Letters, 2015, vol. 142, pp. 42-44. https://doi.org/10.1016/j.matlet.2014.11.111

11. Rodriguez-Carvajal J. R. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 1993, vol. 192, no. 1-2, pp. 55-69. https://doi.org/10.1016/0921-4526(93)90108-i


Review

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)