Crystal structure of the system of (1-y)(BiFeO3)-y(Ba1-xSrxTiO3) solid solution.
https://doi.org/10.29235/1561-8323-2022-66-4-397-403
Abstract
The crystal structure of the system of (1-y)(BiFeO3)-y(Ba1-xSrxTiO3) (0 ≤ x ≤1; 0,2 ≤ y ≤ 0,4) solid solutions was studied based on the X-ray diffraction data and the scanning electron microscopy results. The obtained results have allowed determining the concentration ranges of a single-phase structural state, as well as the regions of coexistence of two structure phases. It is shown that an increase in the concentration of the dopant ions leads to a decrease in rhombohedral distortions. The structure of the compounds with y = 0.25-0.33 is characterized by the coexistence of the rhombohedral and pseudocubic phases. Further chemical doping leads to the transformation of the structure; it becomes single-phase and has a cubic symmetry. Splitting of the reflections specific to the rhombohedral phase completely disappears for the compounds with y = 0.35; 0.40. Particular attention is paid to the analysis of the structure of solid solutions in the region of the concentration phase transition. The evolution of crystallite morphology was determined as a function of the type of structure distortions and dopants concentration.
Keywords
About the Authors
D. V. ZheludkevichBelarus
Zheludkevich Dmitry V. – Junior Researcher.
19, P. Brovka Str., 220072, Minsk
S. I. Latushko
Belarus
Latushko Sergei I. – Junior Researcher.
19, P. Brovka Str., 220072, Minsk
M. V. Silibin
Russian Federation
Silibin Maxim V. – Ph. D. (Engineering), Assistant Professor.
A. N. Chobot
Belarus
Chobot Aleksandra N. – Ph. D. (Physics and Mathematics), Senior Researcher.
19, P. Brovka Str., 220072, Minsk
A. V. Sysa
Russian Federation
Sysa Artem V. – Ph. D. (Engineering), Senior Researcher.
1, Shokin sq., 124498, Zelenograd
K. N. Neklyudov
Russian Federation
Neklyudov Kapiton N. – Junior Researcher.
1, Shokin sq., 124498, Zelenograd
G. M. Chobot
Belarus
Chobot Gennadii M. – Ph. D. (Physics and Mathematics), Assistant Professor.
99, Nezavisimosti Ave., 220023, Minsk
D. V. Karpinsky
Belarus
Karpinsky Dmitry V. – Ph. D. (Physics and Mathematics), Head of the Laboratory.
19, P. Brovka Str., 220072, Minsk
References
1. Haumont R., Kornev I. A., Lisenkov S., Bellaiche L., Kreisel J., Dkhil B. Phase stability and structural temperature dependence in powdered multiferroic BiFeO3. Physical Review B, 2008, vol. 78, no. 13, art. 134108. https://doi.org/10.1103/physrevb.78.134108
2. Kim S., Khanal G. P, Nam H.-W., Fujii I., Ueno S., Moriyoshi C., Kuroiwa Y., Wada S. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. Journal of Applied Physics, 2017, vol. 122, no. 16, pp. 164105. https://doi.org/10.1063Z1.4999375
3. Karpinsky D. V., Troyanchuk I. O., Tovar M., Sikolenko V., Efimov V., Efimova E., Shur V. Ya., Kholkin A. L. Temperature and Composition-Inducet Structural Transitions in Bi11–xLa(Pr)xFeO3 ceramics. Journal of the American Ceramic Society, 2014, vol. 97, no. 8, pp. 2631-2638. https://doi.org/10.1111/jace.12978
4. Arnold D. C., Knight K. S., Catalan G., Redfern S. A., Scott J. F., Lightfoot P, Morrison F. D., The β-to-γ Transition in BiFeO3: A Powder Neutron Diffraction Study. Advanced Functional Materials, 2010, vol. 20, no. 13, pp. 2116-2123. https://doi.org/10.1002/adfm.201000118
5. Kirsch A., Murshed M. M., Kirkhame M. J., Huq A.., Litterst F. J., Gesing T. M. Temperature-dependent structural and spectroscopic studies of (Bi1-^Fe^)FeO3. Journal of Physical Chemistry C, 2018, vol. 122, no. 49, pp. 28280-28291. https://doi. org/10.1021/acs.jpcc.8b05740
6. Catalan G., Scott J. F. Physics and Applications of Bismuth Ferrite. Advanced Materials, 2009, vol. 21, no. 24, pp. 24632485. https://doi.org/10.1002/adma.200802849
7. Selbach S. M., Tybell T., Einarsrud M. A., Grande T. The Ferroic Phase Transitions of BiFeO3. Advanced Materials, 2008, vol. 20, no. 19, pp. 3692-3696. https://doi.org/10.1002/adma.200800218
8. Karpinsky D. V., Troyanchuk I. O., Mantytskaya O. S., Khomchenko V. A., Kholkin A. L. Structural Stability and Magnetic Properties of Bi11–xLa(Pr)xFeO3 Solid Solutions. Solid State Communications, 2011, vol. 151, no. 22, pp. 1686-1689. https://doi.org/10.1016/j.ssc.2011.08.002
9. Lee S. H., Tian G., Kim T. C., Jung H. K., Choi J. W., Walker F. J., Ahn C. H., Ross C. A., Kim D. H. Integration of sputter-deposited multiferroic CoFe2O4-BiFeO3 nanocomposites on conductive La07Sr03MnO3 electrodes Seung. Nanotechnology, 2019, vol. 30, no. 10, pp. 105601. https://doi.org/10.1088/1361-6528/aaf7cd
10. Priya A. S., Banu S. I. B., Anwar S. Investigation of multiferroic properties of doped BiFeO3-BaTiO3 composite ceramics. Materials Letters, 2015, vol. 142, pp. 42-44. https://doi.org/10.1016/j.matlet.2014.11.111
11. Rodriguez-Carvajal J. R. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 1993, vol. 192, no. 1-2, pp. 55-69. https://doi.org/10.1016/0921-4526(93)90108-i