Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Interaction of recombinant human lactoferrin and SARS-CoV-2 virus to heparin-protein conjugate

D. A. Semenov, I. I. Vashkevich, A. S. Vladyko, O. V. Sviridov

(Communicated by Corresponding Member Sergey A. Usanov)

https://doi.org/10.29235/1561-8323-2022-66-4-404-413

Abstract

The advantages of the complex of recombinant human lactoferrin (rhLF) with europium ions have been used to establish quantitative parameters of specific interaction of rhLF with immobilized heparin-protein conjugate as a model of cell-surface heparan sulfate proteoglycans. Heparin coupled through terminal formyl by reductive amination to an inert protein was adsorbed through the protein part in the wells of a polystyrene microplate. The rhLF–Eu3+ complex obtained from native rhLF contains 0.8 mol of lanthanide ion per mol of protein (40 % saturation level). Equilibrium in the heterophase binding system is established within 1 min at room temperature, and the calculated association constant of the rhLF-heparin complex is 2.1 × 107 M–1. The reversible and saturable character of binding rhLF labeled by Eu3+ at the active site to heparin was confirmed by the transition of rhLF–Eu3+ into the liquid phase when a 1000-fold molar excess of unlabeled rhLF was added to the system. Based on the affinity of rhLF for glycosaminoglycan, a blocking effect of this protein on the binding of the SARS-CoV-2 virus to the immobilized heparin-protein conjugate that imitates proteoglycan on the host cell surface was revealed. Pretreatment of the adsorbed conjugate with a solution of rhLF (10 µg per well) reduces the specific binding of 100 ng of viral particles added to the well by approximately 80 %. The presented results allow one, in particular, to evaluate the integrity of the structure and activity of rhLF as a possible substance in food supplements and pharmaceuticals and may be useful in developing combined drugs for corona virus infection.

About the Authors

D. A. Semenov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Semenov Dmitry A. – Researcher. I

5/2, Kuprevich Str., 220141, Minsk



I. I. Vashkevich
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Vashkevich Irina I. – Ph. D. (Chemistry), Leading Researcher. 

5/2, Kuprevich Str., 220141, Minsk



A. S. Vladyko
Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Vladyko Aleksandr S. – D. Sc. (Medicine), Chief Researcher.

23, Filimonov Str., 220114, Minsk



O. V. Sviridov
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Sviridov Oleg V. – D. Sc. (Chemistry), Head of the Laboratory.

5/2, Kuprevich Str., 220141, Minsk



References

1. Borzenkova N. V., Balabushevich N. G., Larionova N. I. Lactoferrin: physical and chemical properties, biological functions, delivery systems, pharmaceutical and nutraceutical preparations (review). Biofarmacevticheskiy jurnal = Biopharmaceutical Journal, 2010, vol. 2, no. 3, pp. 3–19 (in Russian).

2. Mann D. M., Romm E., Migliorini M. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. Journal of Biological Chemistry, 1994, vol. 269, no. 38, pp. 23661–23667. https://doi.org/10.1016/s0021-9258(17)31566-1

3. Bogdanovich D. M., Radchikov V. F., Kuznetsova V. N., Petrushko E. V., Spivak M. E., Sivko A. N. Goats producing biosimilar human lactoferrin. IOP Conference Series: Earth and Environmental Science, 2021, vol. 848, no. 1, art. 012080. https://doi.org/10.1088/1755-1315/848/1/012080

4. Lukashevich V. S., Budzevich A. I., Semak I. V., Kuznetsova V. N., Malyushkova E. V., Pyzh A. E., Novakovskaya S. A., Rudnichenko J. A., Popkov N. A., Ivashkevich O. A., Zalutsky I. V. Production of recombinant human lactoferrin from the milk of goat-producers and its physiological effects. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016, vol. 60, no. 1, pp. 72–81 (in Russian).

5. Birukou R. N., Kastsianevich А. А., Kapustin M. A., Falkouskaya U. V., Chubarova H. S., Hubchyk K. A. Antimicrobial and antioxidant properties of apoform of recombinant human lactoferrin isolated from goat milk. Mikrobnye biotehnologii: fundamental’nye i prikladnye aspekty = Microbial biotechnologies: fundamental and applied aspects, 2017, vol. 9, pp. 305– 317 (in Russian).

6. Semenov D. A., Kuprienko O. S., Vashkevich I. I., Sviridov O. V. Some metal binding properties of recombinant human lactoferrin from the milk of transgenic goats. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2022, vol. 66, no. 1, pp. 43–54 (in Russian). https://doi.org/10.29235/1561-8323-2022-66-1-43-54

7. Semenov D. A., Vashkevich I. I., Sviridov O. V. New immunoassay systems based on recombinant human lactoferrin. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 3, pp. 290–302 (in Russian). https://doi.org/10.29235/1561-8323-2021-65-3-290-302

8. Van Berkel P. H. C., Geerts E. J. M., van Veen A. H., Mericskay M., de Boer A. H., Nuijens J. H. N-terminal stretch Arg2, Arg3, Arg4 and Arg5 of human lactoferrin is essential for binding to heparin, bacterial lipopolysaccharide, human lysozyme and DNA. Biochemical Journal, 1997, vol. 328, no. 1, pp. 145–151. https://doi.org/10.1042/bj3280145

9. Hermanson G. T. Bioconjugate techniques, Third Edition. Academic Press, 2013, pp. 217–218. https://doi.org/10.1016/C2009-0-64240-9

10. Kett W. C., Osmond R. I. W., Stevenson S. M., Moe L., Coombe D. R. Direct detection of the binding of avidin and lactoferrin fluorescent probes to heparinized surfaces. Analytical Biochemistry, 2005, vol. 339, no. 2, pp. 206–215. https://doi.org/10.1016/j.ab.2005.01.054

11. Pejler G. Lactoferrin regulates the activity of heparin proteoglycan-bound mast cell chymase: characterization of the binding of heparin to lactoferrin. Biochemical Journal, 1996, vol. 320, no. 3, pp. 897–903. https://doi.org/10.1042/bj3200897

12. Kett W. C., Osmond R. I. W., Moe L., Skett S. E., Kinnear B. F., Coombe D. R. Avidin is a heparin-binding protein. Affinity, specificity and structural analysis. Biochimica et Biophysica Acta, 2003, vol. 1620, no. 1–3, pp. 225–234. https://doi.org/10.1016/s0304-4165(02)00539-1

13. Mirabelli C., Wotring J. W., Zhang C. J., McCarty S. M., Fursmidt R., Pretto C. D., Qiao Y., Zhang Y., Frum T., Kadambi N. S., Amin A. T., O’Meara T. R., Spence J. R., Huang J., Alysandratos K. D., Kotton D. N., Handelman S. K., Wobus C. E., Weatherwax K. J., Mashour G. A., O’Meara M. J., Chinnaiyan A. M., Sexton J. Z. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. PNAS, 2021, vol. 118, no. 36, art. e2105815118. https://doi.org/10.1073/pnas.2105815118

14. Lang J., Yang N., Deng J., Liu K., Yang P., Zhang G., Jiang C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS ONE, 2011, vol. 6, no. 8, art. e23710. https://doi.org/10.1371/journal.pone.0023710


Review

Views: 349


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)