Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Comparative analysis of the structure-function changes in the endodermal cells of tomato leaf petioles after gravity stimulation and phytohormone action

https://doi.org/10.29235/1561-8323-2022-66-4-425-432

Abstract

The sedimentaion of amyloplasts in tomato leaf petiole cells, when influenced by gravistimulation, gravistimulation and phytohormone epine, gravistimulation, and by an exogenous source of ethylene ethephon for a period of 0.25–24 h, was demonstrated. Ethephone significantly slowed down the sedimentation of amyloplasts serving as statolytes in cells, which correlates with its inhibitory effect on the formation of the gravitropic bending of the stem.

About the Authors

S. V. Sukhaveyeva
Institute of Biophysics  and  Cell  Engineering  of  the  National  Academy of Sciences of Belarus
Belarus

Sukhaveyeva Sviatlana V. – Researcher.

27, Akademicheskaya Str., 220072, Minsk



A. M. Kabachevskaya
Institute of Biophysics  and  Cell  Engineering  of  the  National  Academy of Sciences of Belarus
Belarus

Kabachevskaya Alena M. – Ph. D. (Biology), Неad of the Laboratory.  I

27, Akademicheskaya  Str.,  220072,  Minsk



T. E. Kuznetsova
Institute of Physiology of the National Academy of Sciences of Belarus
Belarus

Kuznetsova Tatyana E. – Ph. D. (Biology), Head of the Laboratory.

28, Akademicheskaya Str., 220072, Minsk



I. D. Volotovski
Institute of Biophysics  and  Cell  Engineering  of  the  National  Academy of Sciences of Belarus
Belarus

Volotovski Igor D. – Academician, D. Sc. (Biology), Professor, Chief Researcher. 

27, Akademicheskaya Str., 220072, Minsk



References

1. Kolesnikov Y. S., Kretynin S. V., Volotovsky I. D., Kordyum E. L., Ruelland E., Kravets V. S. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma, 2016, vol. 253, no. 4, pp. 987–1004. https://doi.org/10.1007/s00709-015-0859-5

2. Haswell E. S. Gravity Perception: How Plants Stand up for Themselves. Current Biology, 2003, vol. 13, no. 19, pp. 761– 763. https://doi.org/10.1016/j.cub.2003.09.016

3. Fujihira K., Kurata T., Watahiki M. K., Karahara I., Yamamoto K. T. An agravitropic mutant of arabidopsis, endodermal-amyloplast less 1, that lacks amyloplasts in hypocotyl endodermal cell layer. Plant and Cell Physiology, 2000, vol. 41, no. 11, pp. 1193–1199. https://doi.org/10.1093/pcp/pcd046

4. Lotova L. I. Botany: Morphology and anatomy of higher plants. Мoscow, 2010. 512 p. (in Russian).

5. Weise S. E., Kuznetsov O. A., Hasenstein K. H., Kiss J. Z. Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant and Cell Physiology, 2000, vol. 41, no. 6, pp. 702–709. https://doi.org/10.1093/ pcp/41.6.702

6. Suhoveeva S. V., Kabachevskaya E. M., Volotovsky I. D. Gravitropic and nastic movements in above-ground organs of tomato plants. Botanika (issledovaniya) [Botany (research)]. Minsk, 2021, vol. 50, pp. 401–410 (in Russian).

7. Sukhaveeva S. V., Kabachevskaya E. M., Volotovski I. D. On the coupling of expression of some key genes controlling phospholipid, carbohydrate metabolism and transmembrane transport in tomato plants with their gravitropic reaction. Molekulyarnaya i prikladnaya genetika [Molecular and Applied Genetics], 2021, vol. 31, pp. 31–41 (in Russian).

8. Suhoveeva S. V., Kabachevskaya E. M., Volotovsky I. D. Properties of the development of a gravitropic signal in overground organs of tomato plants. Vestnik Fonda fundamental’nykh issledovanii = Vestnik of the Foundation for Fundamental Research, 2022, no. 1, pp. 94–101 (in Russian).

9. Dhonukshe P., Tanaka H., Goh T., Ebine K., Mahonen A. P., Prasad K., Blilou I., Geldner N., Xu J., Uemura T., Chory J., Ueda T., Nakano A., Scheres B., Friml J. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 2008, vol. 456, no. 7224, pp. 962–966. https://doi.org/10.1038/nature07409

10. Rahman A., Takahashi M., Shibasaki K., Wu S., Inaba T., Tsurumi S., Baskin T. I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell, 2010, vol. 22, no. 6, pp. 1762−1776. https://doi.org/10.1105/tpc.110.075317

11. Pozhvanov G. A., Suslov D. V., Medvedev S. S. Actin cytoskeleton rearrangements during the gravitropic response of Arabidopsis roots. Cell and Tissue Biology, 2013, vol. 7, no. 2, pp. 185–191. https://doi.org/10.1134/s1990519x13020120

12. Nick P., Han M. J., An G. Auxin stimulates its own transport by shaping actin filaments. Plant Physiology, 2009, vol. 151, no. 1, pp. 155–167. https://doi.org/10.1104/pp.109.140111

13. Zhao Y., Zhao S., Mao T., Qu Х., Cao W., Zhang L., Zhang W., He L., Li S., Ren S., Zhao J., Zhu G., Huang S., Ye K., Yuan M., Guo Y. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. Plant Cell, 2011, vol. 23, no. 6, pp. 2314–2330. https://doi.org/10.1105/tpc.111.086546

14. Blancaflor E. B. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. American Journal of Botany, 2013, vol. 100, no. 1, pp. 143–152. https://doi.org/10.3732/ajb.1200283

15. Morita M. T., Kato T., Nagafusa K., Saito C., Ueda T., Nakano A., Tasaka M. Involvement of the Vacuoles of the Endodermis in the Early Process of Shoot Gravitropism in Arabidopsis. Plant Cell, 2002, vol. 14, no. 1, pp. 47–56. https://doi.org/10.1105/tpc.010216


Review

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)