1. Kolesnikov Y. S., Kretynin S. V., Volotovsky I. D., Kordyum E. L., Ruelland E., Kravets V. S. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma, 2016, vol. 253, no. 4, pp. 987-1004. https://doi.org/10.1007/s00709-015-0859-5
2. Haswell E. S. Gravity Perception: How Plants Stand up for Themselves. Current Biology, 2003, vol. 13, no. 19, pp. 761- 763. https://doi.org/10.1016/j.cub.2003.09.016
3. Fujihira K., Kurata T., Watahiki M. K., Karahara I., Yamamoto K. T. An agravitropic mutant of arabidopsis, endodermal-amyloplast less 1, that lacks amyloplasts in hypocotyl endodermal cell layer. Plant and Cell Physiology, 2000, vol. 41, no. 11, pp. 1193-1199. https://doi.org/10.1093/pcp/pcd046
4. Lotova L. I. Botany: Morphology and anatomy of higher plants. Moscow, 2010. 512 p. (in Russian).
5. Weise S. E., Kuznetsov O. A., Hasenstein K. H., Kiss J. Z. Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant and Cell Physiology, 2000, vol. 41, no. 6, pp. 702-709. https://doi.org/10.1093/ pcp/41.6.702
6. Suhoveeva S. V., Kabachevskaya E. M., Volotovsky I. D. Gravitropic and nastic movements in above-ground organs of tomato plants. Botanika (issledovaniya) [Botany (research)]. Minsk, 2021, vol. 50, pp. 401-410 (in Russian).
7. Sukhaveeva S. V., Kabachevskaya E. M., Volotovski I. D. On the coupling of expression of some key genes controlling phospholipid, carbohydrate metabolism and transmembrane transport in tomato plants with their gravitropic reaction. Molekulyarnaya i prikladnaya genetika [Molecular and Applied Genetics], 2021, vol. 31, pp. 31-41 (in Russian).
8. Suhoveeva S. V., Kabachevskaya E. M., Volotovsky I. D. Properties of the development of a gravitropic signal in overground organs of tomato plants. Vestnik Fonda fundamental’nykh issledovanii = Vestnik of the Foundation for Fundamental Research, 2022, no. 1, pp. 94-101 (in Russian).
9. Dhonukshe P., Tanaka H., Goh T., Ebine K., Mahonen A. P., Prasad K., Blilou I., Geldner N., Xu J., Uemura T., Chory J., Ueda T., Nakano A., Scheres B., Friml J. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 2008, vol. 456, no. 7224, pp. 962-966. https://doi.org/10.1038/nature07409
10. Rahman A., Takahashi M., Shibasaki K., Wu S., Inaba T., Tsurumi S., Baskin T. I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell, 2010, vol. 22, no. 6, pp. 1762−1776. https://doi.org/10.1105/tpc.110.075317
11. Pozhvanov G. A., Suslov D. V., Medvedev S. S. Actin cytoskeleton rearrangements during the gravitropic response of Arabidopsis roots. Cell and Tissue Biology, 2013, vol. 7, no. 2, pp. 185-191. https://doi.org/10.1134/s1990519x13020120
12. Nick P., Han M. J., An G. Auxin stimulates its own transport by shaping actin filaments. Plant Physiology, 2009, vol. 151, no. 1, pp. 155-167. https://doi.org/10.1104/pp.109.140111
13. Zhao Y., Zhao S., Mao T., Qu Kh., Cao W., Zhang L., Zhang W., He L., Li S., Ren S., Zhao J., Zhu G., Huang S., Ye K., Yuan M., Guo Y. The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis. Plant Cell, 2011, vol. 23, no. 6, pp. 2314-2330. https://doi.org/10.1105/tpc.111.086546
14. Blancaflor E. B. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. American Journal of Botany, 2013, vol. 100, no. 1, pp. 143-152. https://doi.org/10.3732/ajb.1200283
15. Morita M. T., Kato T., Nagafusa K., Saito C., Ueda T., Nakano A., Tasaka M. Involvement of the Vacuoles of the Endodermis in the Early Process of Shoot Gravitropism in Arabidopsis. Plant Cell, 2002, vol. 14, no. 1, pp. 47-56. https://doi.org/10.1105/tpc.010216