Formation and antibacterial properties of graphitic carbon nitride
https://doi.org/10.29235/1561-8323-2022-66-4-454-459
Abstract
Graphitic carbon nitride (g-C3N4 ) was synthesized by pyrolysis of thiocarbamide and a subsequent polymerization of its products at 500 °С. After grinding the synthesized material, aqueous suspensions with the concentrations of the particles of 100–300 μg/ml were prepared from it. The antibacterial activity of the material under irradiation with the LED’s visible light for 60–120 min was confirmed for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
About the Authors
E. B. ChubenkoBelarus
Chubenko Eugene B. – Ph. D. (Engineering), Associate Professor, Leading Researcher.
6, P. Brovka Str., 220013, Minsk
A. V. Baglov
Belarus
Baglov Aleksey V. – Researcher. Belarusian State University Informatics and Radioelectronics ; Researcher. Belarusian State University
6, P. Brovka Str., 220013, Minsk;
4, Nezavisimosti Ave., 220030, Minsk
O. A. Emeliyanova
Belarus
Emeliyanova Olga A. – Ph. D. (Biology), Senior Researcher.
8, Akademicheskaya Str., 220012, Minsk
N. V. Dudchik
Belarus
Dudchik Natalia V. – D. Sc. (Biology), Associate Professor, Head of the Laboratory.
8, Akademicheskaya Str., 220012, Minsk
A. V. Drazdova
Belarus
Drazdova Alena V. – Ph. D. (Medicine), Associate Professor, Vice director.
8, Akademicheskaya Str., 220012, Minsk
V. E. Borisenko
Belarus
Borisenko Victor E. – D. Sc. (Physics and Mathematics), Professor, Head of the Department. Belarusian State University Informatics and Radioelectronics ; Invited Professor. National Research Nuclear University «MEPhI»
6, P. Brovka Str., 220013, Minsk;
Kashirskoe Shosse, 115409, Moscow
References
1. Wen J., Xie J., Chen X., Li X. A review on g-C N -based photocatalysts. Applied Surface Science, 2017, vol. 391, part B, pp. 72–123. https://doi.org/10.1016/j.apsusc.2016.07.030
2. Das D., Shinde S. L., Nanda K. K. Temperature-Dependent Photoluminescence of g-C3 N4 : Implication for Temperature Sensing. ACS Applied Materials and Interfaces, 2016, vol. 8, no. 3, pp. 2181–2186. https://doi.org/10.1021/acsami.5b10770
3. Chubenko E. B., Baglov A. V., Lisimova E. S., Borisenko V. E. Synthesis of Graphitic Carbon Nitride in Porous Silica Glass. International Journal of Nanoscience, 2019, vol. 18, no. 03–04, pp. 1940042-1–1940042-4. https://doi.org/10.1142/s0219581x19400428
4. Chubenko E. B., Denisov N. M., Baglov A. V., Bondarenko V. P., Uglov V. V., Borisenko V. E. Recovery Behavior of the Luminescence Peak from Graphitic Carbon Nitride as a Function of the Synthesis Temperature. Crystal Research and Technology, 2020, vol. 55, no. 3, pp. 1900163-1–1900163-6. https://doi.org/10.1002/crat.201900163
5. Akhavan O., Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, vol. 4, no. 10, pp. 5731–5736. https://doi.org/10.1021/nn101390x
6. Li X., Li F., Gao Z., Fang L. Toxicology of graphene oxide nanosheets against Paecilomyces catenlannulatus. Bulletin of Environmental Contamination and Toxicology, 2015, vol. 95, no. 1, pp. 25–30. https://doi.org/10.1007/s00128-015-1499-3
7. Liu S., Zeng T. H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 2011, vol. 5, no. 9, pp. 6971–6980. https://doi.org/10.1021/nn202451x
8. Wang X., Liu X., Han H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids and Surfaces B: Biointerfaces, 2013, vol. 103, pp. 136–142. https://doi.org/10.1016/j.colsurfb.2012.09.044
9. Pieper H., Chercheja S., Eigler S., Halbig C. E., Filipovic M. R., Mokhir A. Toxizität von Graphenoxid: Endoperoxide als Ursache. Angewandte Chemie, 2016, vol. 128, no. 1, pp. 413–416. https://doi.org/10.1002/ange.201507070
10. Zhao J., Wang Z., White J. C., Xing B. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environmental Science and Technology, 2014, vol. 48, no. 17, pp. 9995–10009. https://doi.org/10.1021/es5022679
11. Baglov A. V., Chubenko E. B., Hnitsko A. A., Borisenko V. E., Malashevich A. A., Uglov V. V. Structural and Photoluminescence Properties of Graphite-Like Carbon Nitride. Semiconductors, 2020, vol. 54, no. 2, pp. 228–232. https://doi.org/10.1134/s1063782620020049
12. Dudchik N. V., Shevlyakov V. V. Prokaryotic test models for assessing the biological effect and hygienic regulation of environmental factors. Sovremennye metodologicheskie problemy izucheniya, otsenki i reglamentirovaniya faktorov okruzhayushchei sredy, vliyayushchikh na zdorov’e cheloveka, 15–16 dekabrya 2016 g.: materialy konferencii / Nauch. sovet RF po ekologii cheloveka i gigiene okruzhayushchei sredy; redkol.: Yu. A. Rakhmanin, glavnyi redaktor [Rakhmanin Yu. A., ed. Modern methodological problems of the study, assessment and regulation of environmental factors affecting human health, December 15–16, 2016: materials conference]. Moscow, 2016, pp. 187–189 (in Russian).
13. McLean D. T., Lundy F. T., Timson D. J. IQ-motif peptides as novel anti-microbial agents. Biochimie, 2013, vol. 95, no. 4, pp. 875–880. https://doi.org/10.1016/j.biochi.2012.12.004
14. Dudchik N. V. Investigation of the properties of the soil microbial consortium as a test objects for estimation of integral toxicity. Gigiena i sanitariya [Hygiene and Sanitation], 2012, vol. 91, no. 5, pp. 82–84 (in Russian).