Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Improving the accuracy of short-term numerical weather forecasts for the territory of Belarus using the mesoscale WRF model and earth remote sensing data

https://doi.org/10.29235/1561-8323-2023-67-1-66-73

Abstract

The problem of improving the WRF numerical weather model performance for the territory of Belarus by assimilating the Earth remote sensing data is considered. It is shown that for the winter period, the use of satellite data of high spatial resolution, including on the structure of land use , albedo, leaf index and photosynthetically active radiation absorbed by the underlying surface can reduce a root-mean-square error of the short-term forecast (up to 48 h) of the air surface temperature by 0.53–1.11 °С. For the summer period, on the basis of numerical experiments the optimal correction factor for the land surface albedo was estimated. This made it possible to reduce a root-mean-square error of temperature forecast at the meteorological stations of Belarus for the lead time of +12, +24, +36, and +48 h by an average of 0.30 °С, 0.10 °С, 0.15 °С, and 0.16 °С, respectively.

About the Authors

S. A. Lysenko
Institute for Nature Management of the National Academy of Sciences of Belarus
Belarus

Lysenko Sergey A. – D. Sc. (Physical and Mathematical), Professor, Director

10, F. Skorina Str., 220076, Minsk



P. O. Zaiko
Institute for Nature Management of the National Academy of Sciences of Belarus
Russian Federation

Zaiko Polina O. – Researcher. Institute for Nature Management of the National Academy of Sciences of Belarus

10, F. Skorina Str., 220076



References

1. Hagelin S., Azad R., Lindskog M., Schyberg H., Körnich H. Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome. Atmospheric Measurement Techniques, 2021, vol. 14, no. 9, pp. 5925–5938. https://doi.org/10.5194/amt-14-5925-2021

2. Lagasio М., Pulvirenti L., Parodi A., Boni G., Pierdicca N., Venuti G., Realini E., Tagliaferro G., Barindelli S., Rommen B. Effect of the ingestion in the WRF model of different Sentinel-derived and GNSS-derived products: analysis of the forecasts of a high impact weather event. European Journal of Remote Sensing, 2019, vol. 52, no. 4, pp. 16–33. https://doi.org/10.1080/22797254.2019.1642799

3. Yan D., Liu T., Dong W., Liao X., Luo S., Wu K., Zhu X., Zheng Zh., Wen X. Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dynamics of Atmospheres and Oceans, 2020, vol. 89, art. 101127. https://doi.org/10.1016/j.dynatmoce.2019.101127

4. Ran L., Gilliam R., Binkowski F. S., Xiu A., Pleim J., Band L. Sensitivity of the Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and albedo. Journal of Geophysical Research: Atmospheres, 2015, vol. 120, no. 16, pp. 8491–8511. https://doi.org/10.1002/2015jd023424

5. Li H., Zhang H., Mamtimin A., Fan S., Ju C. A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model. Atmosphere, 2020, vol. 11, no. 4, pp. 350. https://doi.org/10.3390/atmos11040350

6. Knist S., Goergen K., Simmer C. Effects of land surface inhomogeneity on convection-permitting WRF simulations over central Europe. Meteorology and Atmospheric Physics, 2020, vol. 132, no. 1, pp. 53–69. https://doi.org/10.1007/s00703-019-00671-y

7. Chang M., Fan S., Fan Q., Chen W., Zhang Y., Wang Y., Wang X. Impact of refined land surface properties on the simulation of a heavy convective rainfall process in the Pearl River Delta region, China. Asia-Pacific Journal of Atmospheric Sciences, 2014, vol. 50, no. 1, pp. 645–655. https://doi.org/10.1007/s13143-014-0052-3

8. Skamarock W. C., Klemp J. B., Dudhia J., Gill D. O., Liu Z., Berner J., Wang W., Powers J. G., Duda M. G., Barker D. M. Huang X.-Y. A description of the Advanced Research WRF Model Version 4. Boulder, Colorado, National Center for Atmospheric Research, 2019. 165 p.

9. Global Forecast System (GFS) [Rules for the citing sources]. Available at: https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.

10. Schaaf C., Wang Z. MCD43A3: MODIS/Terra and Aqua BRDF/Albedo Daily L3 Global 500 m V006 [Data Set]. NASA EOSDIS Land Processes DAAC, 2015. https://doi.org/10.5067/MODIS/MCD43A1.006


Review

Views: 315


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)