Boron-enriched pyrolitic carbon: material for biomedical and engineering applications
https://doi.org/10.29235/1561-8323-2023-67-3-250-256
Abstract
The article describes a technological set-up and the synthesis methodology of boron-enriched pyrolytic carbon (B-PyC). The chemical vapor deposition (CVD) approach lies in the basis of the methodology. The synthesis occurs on the inner surface of a cylindrical graphite assembly indirectly heated to the temperatures of 1450–1570 °C. Controlled low-density flows of nitrogen, boron trichloride and carbonaceous gases react in the assembly, producing a B-PyC film deposited on the graphite substrate. The set-up has been designed to provide fabrication of B-PyC plates possessing features required for heart valve endoprosthesis: chemical inertia and biocompatibility combined with high hardness, high elasticity, and long operating life. The morphology and chemical composition of the material have been studied by electron scanning microscopy and Raman spectroscopy. The material is used at the “Electronmash Plant” for fabrication of heart valve endoprosthesis leaflets.
About the Authors
M. I. DemidenkoBelarus
Demidenko Marina I. – Head of the Laboratory
11, Bobruiskaya Str., 220006, Minsk, Republic of Belarus
D. V. Adamchuk
Belarus
Adamchuk Dmitry V. – P h. D. ( Physics a nd M athematics), Senior Researcher
11, Bobruiskaya Str., 220006, Minsk, Republic of Belarus
A. P. Rusanov
Belarus
Rusanov Andrey P. – Head of KTB
2, Partizanski Ave., 220033, Minsk, Republic of Belarus
S. V. Sirotkin
Belarus
L. V. Ivanko
Belarus
Ivanko Leonid V. – Acting Director
2, Partizanski Ave., 220033, Minsk, Republic of Belarus
S. A. Maksimenko
Belarus
Maksimenko Sergey A. – D. Sc. (Physics and Mathematics), Professor, Director
11, Bobruiskaya Str., 220006, Minsk, Republic of Belarus
References
1. Maksimenko S. A., Kulahava T. A., Okotrub A. V., Suslyaev V. I. Actual problems of the usage of composite and hybrid materials based on different forms of nanocarbons in electromagnetic and biomedical applications. Journal of the Belarusian State University. Physics, 2023, no. 1, pp. 55–69 (in Russian). https://doi.org/10.33581/2520-2243-2023-1-55-69
2. Zolkin P. I., Ostrovskii V. S. Carbon materials in medicine. Moscow, 2014. 140 p. (in Russian).
3. Rajakumar G., Zhang X.-H., Gomathi T., Wang S.-F., Ansari M. A., Mydhili G., Nirmala G., Alzohairy M. A., Chung I.-M. Current use of carbon-based materials for biomedical applications – a prospective and review. Processes, 2020, vol. 8, no. 2, art. 355. https://doi.org/10.3390/pr8030355
4. Bokeria L. A., Agafonov A. V., Kuznetsov V. O., Gorodkov A. Yu. Pyrocarbons in cardiovascular surgery. Moscow, 2020. 54 p. (in Russian).
5. Li M. M., Fan X., Zheng W. T. First-principle calculations on the structural stability and electronic properties of superhard BxCy compounds. Journal of Physics: Condensed Matter, 2013, vol. 25, no. 42, art. 425502. https://doi.org/10.1088/0953-8984/25/42/425502
6. Hu Q., Wu Q., Ma Y., Zhang L., Liu Z., He J., Sun H., Wang H.-T., Tian Y. First-principles studies of structural and electronic properties of hexagonal BC5. Physical Review B, 2006, vol. 73, no. 21, art. 214116. https://doi.org/10.1103/physrevb.73.214116
7. Baker P., Catledge S, Harris S., Ham K., Chen W.-C., Chen C.-C., Vohra Y. Computational predictions and microwave plasma synthesis of superhard boron-carbon materials. Materials, 2018, vol. 11, no. 8, art. 1279. https://doi.org/10.3390/ma11081279
8. Chasmawala M., Chung T. C. Synthesis of B/C materials from boron-containing phenyl acetylides. Carbon, 1997, vol. 35, no. 5, pp. 641–650. https://doi.org/10.1016/s0008-6223(97)00019-5
9. Way B. M., Dahn J. R., Tiedje T., Myrtle K., Kasrai M. Preparation and characterization of BxC1–x thin films with the graphite structure. Physical Review B, 1992, vol. 46, no. 3, pp. 1697–1702. https://doi.org/10.1103/physrevb.46.1697
10. Lowell C. Solid Solution of Boron in Graphite. Journal of the American Ceramic Society, 1967, vol. 50, no. 3, pp. 142–144. https://doi.org/10.1111/j.1151-2916.1967.tb15064.x
11. Hu R., Chung T. C. Synthesis and characterization of novel B/C materials prepared by 9-chloroborafluorene precursor. Carbon, 1996, vol. 34, no. 10, pp. 1181–1190. https://doi.org/10.1016/0008-6223(96)00064-4
12. Kouvetakis J., Kaner R. B., Sattler M. L., Bartlett N. A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. Journal of the Chemical Society, Chemical Communications, 1986, no. 24, pp. 1758–1759. https://doi.org/10.1039/c39860001758
13. Hach C. T., Jones L. E., Crossland C., Thrower P. A. An investigation of vapor deposited boron rich carbon–a novel graphite-like material–part I: the structure of BCx (C6B) thin films. Carbon, 1999, vol. 37, no. 2, pp. 221–230. https://doi.org/10.1016/s0008-6223(98)00166-3
14. Serin V., Brydson R., Scott A., Kihn Y., Abidate O., Maquin B., Derré A. Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. Carbon, 2000, vol. 38, no. 4, pp. 547–554. https://doi.org/10.1016/s0008-6223(99)00128-1
15. Danishevskiǐ A. M., Smorgonskaya É. A., Gordeev S. K., Grechinskaya A. V. Raman light scattering in nanoporous carbon obtained from silicon and titanium carbides. Physics of the Solid State, 2001, vol. 43, no. 1, pp. 137–144. https://doi.org/10.1134/1.1340199
16. Li Z., Deng L., Kinloch I. A., Young R. J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress in Materials Science, 2023, vol. 135, art. 101089. https://doi.org/10.1016/j.pmatsci.2023.101089