Elastification of the arterial wall by high-intensity low-frequency ultrasound
https://doi.org/10.29235/1561-8323-2023-67-4-287-294
Abstract
A significant increase in the elasticity of the femoropopliteal artery segments in vitro was found as a result of the action of cavitation generated by powerful low-frequency (24–26 kHz) ultrasound introduced into the vessel by a flexible waveguide. The vessel elasticity was evaluated both by the deflection under the action of an external force and by the degree of its expansion vasodilatation by the internal pressure created by the expanding balloon. The possibility of achieving a more than two-fold decrease in the vascular wall elasticity modulus after 30-s exposure to an ultrasound intensity of 31 W/cm2 was shown. It has been established that at the 10 μm amplitude of ultrasonic vibrations, vascular wall damage occurs in the form of small foci of detachment and rupture of the intima accompanied by delamination in the media layer, when polymorphic slit-like cavities are formed with an increase in the amplitude of oscillations above 23 μm.
About the Authors
I. E. AdzerikhoBelarus
Adzerikho Igor E. – D. Sc. (Medicine), Professor
3/3, P. Brovka Str., 220013, Minsk
A. I. Kulak
Belarus
Kulak Anatoly I. – Academician, D. Sc. (Chemistry), Professor, Director. Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus (
9/1, Surganov Str., 220072, Minsk
T. E. Vladimirskaya
Belarus
Vladimirskaya Tatyana E. – Ph. D. (Biology)
3/3, P. Brovka Str., 220013, Minsk
T. V. Leonchik
Belarus
Leonchik Ekaterina V. – Junior Researcher
3/3, P. Brovka Str., 220013, Minsk
S. N. Chur
Belarus
Chur Sergey N. – Ph. D. (Medicine), Associate Professor
83, Dzerzhinsky Ave., 220083, Minsk
V. T. Minchenya
Belarus
Minchenya Vladimir T. – Ph. D. (Engineering), Associate Professor
24, Y. Kolas Str., 220013, Minsk
S. V. Shil’ko
Belarus
Shil’ko Sergei V. – Ph. D. (Engineering), Associate Professor
32a, Kirov Str., 246050, Gomel
References
1. Zieman S. J., Melenovsky V., Kass D. A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, vol. 25, no. 5, pp. 932–943. https://doi.org/10.1161/01.atv.0000160548.78317.29
2. Hoareau M., El Kholti N., Debret R., Lambert E. Zebrafish as a model to study vascular elastic fibers and associated pathologies. International Journal of Molecular Sciences, 2022, vol. 23, no. 4, art. 2102. https://doi.org/10.3390/ijms23042102
3. Pewowaruk R. J., Tedla Y., Korcarz C. E., Tattersall M. C., Stein J. H., Chesler N. C., Gepner A. D. Carotid artery stiffening with aging: structural versus load-dependent mechanisms in MESA (the Multi-Ethnic Study of Atherosclerosis). Hypertension, 2022, vol. 79, no. 1, pp. 150–158. https://doi.org/10.1161/hypertensionaha.121.18444
4. Rosenschein U., Bernstein J. J., DiSegni E., Kaplinsky E., Bernheim J., Rozenzsajn L. A. Experimental ultrasonic angioplasty: disruption of atherosclerotic plaques and thrombi in vitro and arterial recanalization in vivo. Journal of the American College of Cardiology, 1990, vol. 15, no. 3, pp. 711–717. https://doi.org/10.1016/0735-1097(90)90651-5
5. Miyamoto T., Neuman Y., Luo H., Jeon D.-S., Kobal S., Ikeno F., Horzewski M., Honda Ya., Mirocha J. M., Iwami T., Echt D., Fishbein M. C., Siegel R. J. Coronary vasodilation by noninvasive transcutaneous ultrasound: an in vivo canine study. Journal of the American College of Cardiology, 2003, vol. 41, no. 9, pp. 1623–1627. https://doi.org/10.1016/s0735-1097(03)00412-1
6. Siegel R. J., Gaines P., Procter A., Fischell T. A., Cumberland D. C. Clinical demonstration that catheter-delivered ultrasound energy reverses arterial vasoconstriction. Journal of the American College of Cardiology, 1992, vol. 20, no. 3, pp. 732–735. https://doi.org/10.1016/0735-1097(92)90032-i
7. Iida K., Luo H., Hagisawa K., Akima T., Shah P. K., Naqvi T. Z., Siegel R. J. Noninvasive low-frequency ultrasound energy causes vasodilation in humans. Journal of the American College of Cardiology, 2006, vol. 48, no. 3, pp. 532–537. https://doi.org/10.1016/j.jacc.2006.03.046
8. Hauck M., Martins C. N., Moraes M. B., Aikawa P., da Silva Paulitsch F., Della Méa Plentz R., Teixeira da Costa S., Vargas da Silva A. M., Signori L. U. Comparison of the effects of 1 MHz and 3 MHz therapeutic ultrasound on endotheliumdependent vasodilation of humans: a randomised clinical trial. Physiotherapy, 2019, vol. 105, no. 1, pp. 120–125. https://doi.org/10.1016/j.physio.2017.08.010
9. Fischell T. A., Abbas M. A., Grant G. W., Siegel R. J. Ultrasonic energy. Effects on vascular function and integrity. Circulation, 1991, vol. 84, no. 4, pp. 1783–1795. https://doi.org/10.1161/01.cir.84.4.1783
10. Siegel R. J., Gunn J., Ahsan A., Fishbein M. C., Bowes R. J., Oakley D., Wales C., Steffen W., Campbell S., Nita H. Use of therapeutic ultrasound in percutaneous coronary angioplasty. Experimental in vitro studies and initial clinical experience. Circulation, 1994, vol. 89, no. 4, pp. 1587–1592. https://doi.org/10.1161/01.cir.89.4.1587
11. Adzerikho I. E., Shantsila E., Minchenya V., Kulak A. Ultrasound-assisted thrombolysis with streptokinase improves thrombus resolution with minimal distal embolisation. Journal of Thrombosis and Thrombolysis, 2013, vol. 36, no. 3, pp. 263–270. https://doi.org/10.1007/s11239-012-0850-3
12. Adzerikho I. E., Mrochek A. G., Dmitriev V. V., Lukyanchenko O. A., Kulak A. I. Ultrasound fibrin clot destruction in vitro in the presence of fibrinolytic agents. Ultrasonics Sonochemistry, 2001, vol. 8, no. 3, pp. 315–318. https://doi.org/10.1016/s1350-4177(01)00092-x
13. Adzerikho I., Kulak A., Rachok S., Minchenya V. Dependence of the Rate and Completeness of Fibrin Clot Destruction on the Acoustic Dose and Ultrasound Intensity. Ultrasound in Medicine & Biology, 2022, vol. 48, no. 5, pp. 846–855. https://doi.org/10.1016/j.ultrasmedbio.2022.01.005
14. Bulson P. S. Buried structures: static and dynamic strength. CRC Press, 1984. 248 p. https://doi.org/10.1201/9781482267440