Противокоронавирусные свойства брассиностероидов
https://doi.org/10.29235/1561-8323-2023-67-4-295-299
Анатацыя
На примере сезонного респираторного альфа-коронавируса человека 229Е (HCoV-229E) проведено изучение противовирусных свойств природных брассиностероидов кампестанового, эргостанового и стигмастанового рядов (6-кетонов и B-лактонов) и их соответствующих (22S,23S)-аналогов. Показано наличие противокоронавирусных свойств для ряда изученных соединений. 6-Кетоны в целом оказались более активными в сравнении с B-лактонами. Максимальный показатель ингибирующего действия (EC50 21,1 µM) в отношении репродукции HCoV-229E отмечен для (22S,23S)-эпикастастерона.
Ключ. словы
Аб аўтарах
В. ЖабинскийБеларусь
А. Маторин
Беларусь
О. Савинова
Беларусь
Е. Бореко
Беларусь
В. Хрипач
Беларусь
Спіс літаратуры
1. Khripach V. A., Zhabinskii V. N., de Groot A. Brassinosteroids. A New Class of Plant Hormones. San Diego, Academic Press, 1999. 456 p. https://doi.org/10.1016/b978-0-12-406360-0.x5000-x
2. Khripach V. A., Zhabinskii V. N., Khripach N. B. New practical aspects of brassinosteroids and results of their tenyear agricultural use in Russia and Belarus. Hayat S., Ahmad A. Brassinosteroids. Dordrecht, Kluwer Academic Publishers, 2003, pp. 189–230. https://doi.org/10.1007/978-94-017-0948-4_9
3. Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant Journal, 2003, vol. 33, no. 5, pp. 887–898. https://doi.org/10.1046/j.1365-313x.2003.01675.x
4. Zhabinskii V. N., Khripach N. B., Khripach V. A. Steroid plant hormones: effects outside plant kingdom. Steroids, 2015, vol. 97, pp. 87–97. https://doi.org/10.1016/j.steroids.2014.08.025
5. Wachsman M. B., Castilla V. Antiviral Properties of Brassinosteroids. Brassinosteroids: Practical Applications in Agriculture and Human Health. Bentham Science Publishers, 2012, pp. 57–71. https://doi.org/10.2174/978160805298111201010057
6. Wachsman M. B., Castilla V., Talarico L. B., Ramirez J. A., Galagovsky L. R., Coto C. E. Antiherpetic mode of action of (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one in vitro. International Journal of Antimicrobial Agents, 2004, vol. 23, no. 5, pp. 524–526. https://doi.org/10.1016/j.ijantimicag.2003.10.002
7. Michelini F. M., Ramırez J. A., Berra A., Galagovsky L. R., Alche L. E. In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroid analogues. Steroids, 2004, vol. 69, no. 11–12, pp. 713–720. https://doi.org/10.1016/j.steroids.2004.04.011
8. Nasonov I. V., Likhachev M. I., Kisselev P. A., Bovdey N. I., Sauchuk A. L., Zhabinskii V. N., Litvinovskaya R. P., Khripach N. B. Nanostructured complexes of steroid phytohormone: a new approach to protection against viral infection. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2014, vol. 58, no. 6, pp. 53–56 (in Russian).
9. Semenov B. F. Some statistical methods used in processing the results of virological studies. Zdrodovskiy P. F., Sokolov M. I. (eds.). Guidelines for the laboratory diagnosis of viral and rickettsial diseases. Moscow, 1965, pp. 208–218 (in Russian). 1
10. Rokitskiy P. F. Biological statistics. Minsk, 1967. 327 p. (in Russian).
11. Fung K. P. A computer program in BASIC for estimation of ED50 and LD50. Computers in Biology and Medicine, 1989, vol. 19, no. 2, pp. 131–135. https://doi.org/10.1016/0010-4825(89)90005-x
12. Votyakov V. I., Boreko E. I., Vladyko G. V., Karako N. I., Galegov G. A., Leont’yeva N. A. Primary study of the antiviral properties of synthetic and natural compounds. Methodical recommendations. Minsk, 1986. 25 p. (in Russian).
13. Aiken C., Chen C. H. Betulinic acid derivatives as HIV-1 antivirals. Trends in Molecular Medicine, 2005, vol. 11, no. 1, pp. 31–36. https://doi.org/10.1016/j.molmed.2004.11.001
14. Xiao S., Tian Z., Wang Y., Si L., Zhang L., Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Medicinal Research Reviews, 2018, vol. 38, no. 3, pp. 951–976. https://doi.org/10.1002/med.21484
15. Wang H., Xu R., Shi Y., Si L., Jiao P., Fan Z., Han X., Wu X., Zhou X., Yu F., Zhang Y., Zhang L., Zhang L., Zhou D., Xiao S. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. European Journal of Medicinal Chemistry, 2016, vol. 110, pp. 376–388. https://doi.org/10.1016/j.ejmech.2016.01.005