Anti-coronavirus properties of brassinosteroids
https://doi.org/10.29235/1561-8323-2023-67-4-295-299
Abstract
Antiviral properties of natural brassinosteroids of the campestane, ergostane, and stigmastane series (6-ketones and B-lactones) and their (22S,23S)-analogs were studied using the seasonal human respiratory alpha-coronavirus 229E (HCoV-229E) as an example. The presence of anticoronavirus properties was shown for a number of studied compounds. In general, 6-ketones were more active than B-lactones. The maximum inhibitory effect (EC50 21.1 µM) in relation to the reproduction of HCoV-229E was noted for (22S,23S)-epicastasterone.
About the Authors
V. N. ZhabinskiiBelarus
Zhabinskii Vladimir N. – Corresponding Member, D. Sc. (Chemistry), Assistant Professor, Chief Researcher
5/2, Kuprevich Str., 220084, Minsk
A. M. Matorin
Belarus
Matorin Alexey M. – Junior Researcher
5/2, Kuprevich Str., 220084, Minsk
O. V. Savinova
Belarus
Savinova Olga V. – Senior Researcher
23, Filimonov Str., 220114, Minsk
E. I. Boreko
Belarus
Boreko Evgeny I. – D. Sc. (Medicine), Assistant Professor, Chief Researcher
23, Filimonov Str., 220114, Minsk
V. A. Khripach
Belarus
Khripach Vladimir A. – Academician, D. Sc. (Chemistry), Professor, Head of the Laboratory
5/2, Kuprevich Str., 220084, Minsk
References
1. Khripach V. A., Zhabinskii V. N., de Groot A. Brassinosteroids. A New Class of Plant Hormones. San Diego, Academic Press, 1999. 456 p. https://doi.org/10.1016/b978-0-12-406360-0.x5000-x
2. Khripach V. A., Zhabinskii V. N., Khripach N. B. New practical aspects of brassinosteroids and results of their tenyear agricultural use in Russia and Belarus. Hayat S., Ahmad A. Brassinosteroids. Dordrecht, Kluwer Academic Publishers, 2003, pp. 189–230. https://doi.org/10.1007/978-94-017-0948-4_9
3. Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant Journal, 2003, vol. 33, no. 5, pp. 887–898. https://doi.org/10.1046/j.1365-313x.2003.01675.x
4. Zhabinskii V. N., Khripach N. B., Khripach V. A. Steroid plant hormones: effects outside plant kingdom. Steroids, 2015, vol. 97, pp. 87–97. https://doi.org/10.1016/j.steroids.2014.08.025
5. Wachsman M. B., Castilla V. Antiviral Properties of Brassinosteroids. Brassinosteroids: Practical Applications in Agriculture and Human Health. Bentham Science Publishers, 2012, pp. 57–71. https://doi.org/10.2174/978160805298111201010057
6. Wachsman M. B., Castilla V., Talarico L. B., Ramirez J. A., Galagovsky L. R., Coto C. E. Antiherpetic mode of action of (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one in vitro. International Journal of Antimicrobial Agents, 2004, vol. 23, no. 5, pp. 524–526. https://doi.org/10.1016/j.ijantimicag.2003.10.002
7. Michelini F. M., Ramırez J. A., Berra A., Galagovsky L. R., Alche L. E. In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroid analogues. Steroids, 2004, vol. 69, no. 11–12, pp. 713–720. https://doi.org/10.1016/j.steroids.2004.04.011
8. Nasonov I. V., Likhachev M. I., Kisselev P. A., Bovdey N. I., Sauchuk A. L., Zhabinskii V. N., Litvinovskaya R. P., Khripach N. B. Nanostructured complexes of steroid phytohormone: a new approach to protection against viral infection. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2014, vol. 58, no. 6, pp. 53–56 (in Russian).
9. Semenov B. F. Some statistical methods used in processing the results of virological studies. Zdrodovskiy P. F., Sokolov M. I. (eds.). Guidelines for the laboratory diagnosis of viral and rickettsial diseases. Moscow, 1965, pp. 208–218 (in Russian). 1
10. Rokitskiy P. F. Biological statistics. Minsk, 1967. 327 p. (in Russian).
11. Fung K. P. A computer program in BASIC for estimation of ED50 and LD50. Computers in Biology and Medicine, 1989, vol. 19, no. 2, pp. 131–135. https://doi.org/10.1016/0010-4825(89)90005-x
12. Votyakov V. I., Boreko E. I., Vladyko G. V., Karako N. I., Galegov G. A., Leont’yeva N. A. Primary study of the antiviral properties of synthetic and natural compounds. Methodical recommendations. Minsk, 1986. 25 p. (in Russian).
13. Aiken C., Chen C. H. Betulinic acid derivatives as HIV-1 antivirals. Trends in Molecular Medicine, 2005, vol. 11, no. 1, pp. 31–36. https://doi.org/10.1016/j.molmed.2004.11.001
14. Xiao S., Tian Z., Wang Y., Si L., Zhang L., Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Medicinal Research Reviews, 2018, vol. 38, no. 3, pp. 951–976. https://doi.org/10.1002/med.21484
15. Wang H., Xu R., Shi Y., Si L., Jiao P., Fan Z., Han X., Wu X., Zhou X., Yu F., Zhang Y., Zhang L., Zhang L., Zhou D., Xiao S. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. European Journal of Medicinal Chemistry, 2016, vol. 110, pp. 376–388. https://doi.org/10.1016/j.ejmech.2016.01.005