Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

Anti-coronavirus properties of brassinosteroids

https://doi.org/10.29235/1561-8323-2023-67-4-295-299

Abstract

Antiviral properties of natural brassinosteroids of the campestane, ergostane, and stigmastane series (6-ketones and B-lactones) and their (22S,23S)-analogs were studied using the seasonal human respiratory alpha-coronavirus 229E (HCoV-229E) as an example. The presence of anticoronavirus properties was shown for a number of studied compounds. In general, 6-ketones were more active than B-lactones. The maximum inhibitory effect (EC50 21.1 µM) in relation to the reproduction of HCoV-229E was noted for (22S,23S)-epicastasterone.

About the Authors

V. N. Zhabinskii
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Zhabinskii Vladimir N. – Corresponding Member, D. Sc. (Chemistry), Assistant Professor, Chief Researcher

5/2, Kuprevich Str., 220084, Minsk



A. M. Matorin
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Matorin Alexey M. – Junior Researcher

5/2, Kuprevich Str., 220084, Minsk



O. V. Savinova
Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Savinova Olga V. – Senior Researcher

23, Filimonov Str., 220114, Minsk



E. I. Boreko
2Republican Research and Practical Center for Epidemiology and Microbiology
Belarus

Boreko Evgeny I. – D. Sc. (Medicine), Assistant Professor, Chief Researcher

23, Filimonov Str., 220114, Minsk



V. A. Khripach
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Khripach Vladimir A. – Academician, D. Sc. (Chemistry), Professor, Head of the Laboratory

5/2, Kuprevich Str., 220084, Minsk



References

1. Khripach V. A., Zhabinskii V. N., de Groot A. Brassinosteroids. A New Class of Plant Hormones. San Diego, Academic Press, 1999. 456 p. https://doi.org/10.1016/b978-0-12-406360-0.x5000-x

2. Khripach V. A., Zhabinskii V. N., Khripach N. B. New practical aspects of brassinosteroids and results of their tenyear agricultural use in Russia and Belarus. Hayat S., Ahmad A. Brassinosteroids. Dordrecht, Kluwer Academic Publishers, 2003, pp. 189–230. https://doi.org/10.1007/978-94-017-0948-4_9

3. Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant Journal, 2003, vol. 33, no. 5, pp. 887–898. https://doi.org/10.1046/j.1365-313x.2003.01675.x

4. Zhabinskii V. N., Khripach N. B., Khripach V. A. Steroid plant hormones: effects outside plant kingdom. Steroids, 2015, vol. 97, pp. 87–97. https://doi.org/10.1016/j.steroids.2014.08.025

5. Wachsman M. B., Castilla V. Antiviral Properties of Brassinosteroids. Brassinosteroids: Practical Applications in Agriculture and Human Health. Bentham Science Publishers, 2012, pp. 57–71. https://doi.org/10.2174/978160805298111201010057

6. Wachsman M. B., Castilla V., Talarico L. B., Ramirez J. A., Galagovsky L. R., Coto C. E. Antiherpetic mode of action of (22S,23S)-3β-bromo-5α,22,23-trihydroxystigmastan-6-one in vitro. International Journal of Antimicrobial Agents, 2004, vol. 23, no. 5, pp. 524–526. https://doi.org/10.1016/j.ijantimicag.2003.10.002

7. Michelini F. M., Ramırez J. A., Berra A., Galagovsky L. R., Alche L. E. In vitro and in vivo antiherpetic activity of three new synthetic brassinosteroid analogues. Steroids, 2004, vol. 69, no. 11–12, pp. 713–720. https://doi.org/10.1016/j.steroids.2004.04.011

8. Nasonov I. V., Likhachev M. I., Kisselev P. A., Bovdey N. I., Sauchuk A. L., Zhabinskii V. N., Litvinovskaya R. P., Khripach N. B. Nanostructured complexes of steroid phytohormone: a new approach to protection against viral infection. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya biyalagichnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Biological series, 2014, vol. 58, no. 6, pp. 53–56 (in Russian).

9. Semenov B. F. Some statistical methods used in processing the results of virological studies. Zdrodovskiy P. F., Sokolov M. I. (eds.). Guidelines for the laboratory diagnosis of viral and rickettsial diseases. Moscow, 1965, pp. 208–218 (in Russian). 1

10. Rokitskiy P. F. Biological statistics. Minsk, 1967. 327 p. (in Russian).

11. Fung K. P. A computer program in BASIC for estimation of ED50 and LD50. Computers in Biology and Medicine, 1989, vol. 19, no. 2, pp. 131–135. https://doi.org/10.1016/0010-4825(89)90005-x

12. Votyakov V. I., Boreko E. I., Vladyko G. V., Karako N. I., Galegov G. A., Leont’yeva N. A. Primary study of the antiviral properties of synthetic and natural compounds. Methodical recommendations. Minsk, 1986. 25 p. (in Russian).

13. Aiken C., Chen C. H. Betulinic acid derivatives as HIV-1 antivirals. Trends in Molecular Medicine, 2005, vol. 11, no. 1, pp. 31–36. https://doi.org/10.1016/j.molmed.2004.11.001

14. Xiao S., Tian Z., Wang Y., Si L., Zhang L., Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Medicinal Research Reviews, 2018, vol. 38, no. 3, pp. 951–976. https://doi.org/10.1002/med.21484

15. Wang H., Xu R., Shi Y., Si L., Jiao P., Fan Z., Han X., Wu X., Zhou X., Yu F., Zhang Y., Zhang L., Zhang L., Zhou D., Xiao S. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. European Journal of Medicinal Chemistry, 2016, vol. 110, pp. 376–388. https://doi.org/10.1016/j.ejmech.2016.01.005


Review

Views: 305


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)