Tolerance of several construction materials and polycrystalline SiC to blistering and flecking due to ion implantation and annealing
https://doi.org/10.29235/1561-8323-2023-67-5-373-379
Abstract
The results on the tolerance of several construction materials (D16T alloy, Zr, ЭИ-847, 12Х18Н9Т steels) and polycrystаlline SiC to blistering and flecking after irradiation with 500 keV He+ ions and following annealing have been high-lighted. Samples of stainless steels, zirconium, D16T alloy and silicon carbide were irradiated with helium ions in the range from 1016 to 3 · 1018 ion/cm2. Immediately after irradiation and annealing under temperatures from 300 to 750 °C, the optical microscopy was used to study the structure of surface layers. Temperature and fluence ranges of tolerance to blistering and flecking were determined for all examined materials. Primary types of material structure distortions were reviewed.
About the Authors
V. V. Pilko (jr.)Belarus
Vladimir V. Pilko (jr.), Senior Researcher
220045
7, Kurchatov Str.
Minsk
F. F. Komarov
Belarus
Fadei F. Komarov, Academician, D. Sc. (Physics and Mathematics), Professor
220045
7, Kurchatov Str.
Minsk
V. V. Pilko
Belarus
Vladimir V. Pilko, Ph. D. (Physics and Mathematics), Associate Professor, Senior Researcher
220045
7, Kurchatov Str.
Minsk
References
1. Terrani K. A. Accident tolerant fuel cladding development: Promise, status, and challenges. Journal of Nuclear Materials, 2018, vol. 501, pp. 13–30. doi: 10.1016/j.jnucmat.2017.12.043
2. Zinkle S. J., Snead L. L. Designing radiation resistance in materials for fusion energy. Annual Review of Materials Research, 2014, vol. 44, no. 1, pp. 241–267. doi: 10.1146/annurev-matsci-070813-113627
3. Post R. F., Ribe F. L. Fusion reactors as future energy sources. Science, 1974, vol. 186, no. 4162, pp. 397–407. doi: 10.1126/science.186.4162.397
4. Zinkle S. J., Was G. S. Materials challenges in nuclear energy. Acta Materialia, 2013, vol. 61, no. 3, pp. 735–758. doi: 10.1016/j.actamat.2012.11.004
5. Chu S., Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, vol. 488, no. 7411, pp. 294–303. doi: 10.1038/nature11475
6. Kozlovskiy A., Shlimas D., Zdorovets M. Investigation of the effect of ionizing radiation on the structural and conductive characteristics of Ni nanostructures. Vacuum, 2019, vol. 163, pp. 103–109. doi: 10.1016/j.vacuum.2019.02.015
7. Trinkaus H. Ion beam induced amorphization of crystalline solids: mechanisms and modeling. Materials Science Forum, 1997, vol. 248–249, pp. 3–12. doi: 10.4028/www.scientific.net/msf.248-249.3
8. Komarov F. F., Kamyshan A. S., Pilko V. V., Shekunov A. A., Romanovskaya O. F., Urjev G. A. In-air ion beam extraction set-up for the external micro-pixe analysis and local implantation. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2016, vol. 60, no. 5, pp. 71–75 (in Russian).
9. Komarov F. F., Komarov A. F., Pil’ko V. V., Pil’ko V. V. Radiation resistance of structural materials of nuclear reactors on irradiation with high-energy hydrogen and helium ions. Journal of Engineering Physics and Thermophysics, 2013, vol. 86, no. 6, pp. 1481–1484. doi: 10.1007/s10891-013-0976-y
10. Chu W. K., Mayer J. W., Nicolet M. A. Backscattering spectrometry. New York, San Francisco, London, 1978. 344 p.
11. Wang X. Y., Zhang T., Zhang L., Zhao Y., Bian Y., Yang C. Study of the dissolution performance of ferrum and calcium compounds in residue hydrogenation reaction samples. Journal of Fuel Chemistry and Technology, 2021, vol. 49, no. 6, pp. 771–779. doi: 10.1016/s1872-5813(21)60053-1
12. Nikulina A. V., Peregud M. M., Vorob’ev E. E., Khokhunova T. N. Dimensional Stability of the Structural Parts of VVER-1000 FA Made of E-635 Zirconium Alloy. Atomic Energy, 2018, vol. 123, no. 4, pp. 235–243. doi/: 10.1007/s10512-018-0332-6
13. Lee E. H. Ion-beam modification of polymeric materials – fundamental principles and applications. Nuclear Instruments and Methods in Physics Research B, 1999, vol. 151, no. 1–4, pp. 29–41. doi: 10.1016/s0168-583x(99)00129-9
14. Bin Gu, Hong-Yuan Liu, Yiu-Wing Mai, Xi-Qiao Feng, Shou-Wen Yu. Fracture mechanics analysis of the effects of temperature and material mismatch on the Smart-Cut technology. Engineering Fracture Mechanics, 2008, vol. 75, no. 17, pp. 4996–5006. doi: 10.1016/j.engfracmech.2008.06.026
15. Pil’ko V. V., Pil’ko V. V., Komarov F. F., Komarov A. F. Express method to determine radiation resistance of construction materials of atomic reactors by means of high energy hydrogen and helium ions implantation. Materialy 10-i Mezhdunarodnoi konferentsii “Vzaimodeistvie izluchenii s tverdym telom”, 24–27 avgusta 2013 g. Т. 1 [Proceedings of the 10<sup>th</sup> International Conference “Interaction of Radiation with Solids,” August 24–27, 2013. Vol. 1]. Minsk, 2013, pp. 50–52 (in Russian).
16. Pilko V. V., Komarov F. F., Budzynski P. Structure and hardness evolution of silicon carbide epitaxial layers irradiated with He+ ions. Acta Physica Polonica А, 2019, vol. 136, no. 2, pp. 351–355. doi: 10.12693/aphyspola.136.351