Preview

Doklady of the National Academy of Sciences of Belarus

Advanced search

On some classes of finite σ-soluble PσT-groups

https://doi.org/10.29235/1561-83232023-67-6-460-464

Abstract

Let X be a class of groups. Suppose that with each group G ∈ X we associate some system of its subgroups τ(G). Then τ is said to be a subgroup functor on X if the following conditions are hold: (1) G ∈  τ(G) for each group G ∈ X; (2) for any epimorphism φ: A → B, where A, B ∈ X, and for any groups H ∈ τ(A) and T ∈ τ(B) we have Hφ ∈ τ(B) and Tφ-1 ∈ τ( A). In this paper, were considered some applications of such subgroup functors in the theory of finite groups in which generalized normality for subgroups is transitive.

About the Authors

I. N. Safonova
Belarusian State University
Belarus

Safonova Inna N. – Ph. D. (Physics and Mathematics), Associate Professor.

4, Nezavisimosti Ave., 220030, Minsk



A. N. Skiba
Francisk Skorina Gomel State University
Belarus

Skiba Alexander N. – D. Sc. (Physics and Mathematics), Professor.

104, Sovetskaya Str., 246019, Gomel



References

1. Skiba A. N. On σ-subnormal and σ-permutable subgroups of finite groups. Journal of Algebra, 2015, vol. 436, no. 8, pp. 1–16. https://doi.org/10.1016/j.jalgebra.2015.04.010

2. Skiba A. N. A generalization of a Hall theorem. Journal of Algebra and its Applications, 2016, vol. 15, no. 5, pp. 21–36. https://doi.org/10.1142/s0219498816500857

3. Skiba A. N. Algebra of formations. Minsk, 1997. 240 p. (in Russian).

4. Kamornikov S. F., Selkin M. V. Subgroup functors and classes of finite groups. Minsk, 2003. 254 p. (in Russian).

5. Guo W. Structure Theory for Canonical Classes of Finite Groups. Heidelberg, New York, Dordrecht, London, 2015. 359 p. https://doi.org/10.1007/978-3-662-45747-4

6. Vorob’ev N. N. Algebra of Classes of Finite Groups. Vitebsk, 2012. 322 p. (in Russian).

7. Gaschütz W. Gruppen, in denen das Normalteilersein transitiv ist. Journal für die reine und angewandte Mathematik, 1957, vol. 198, pp. 87–92 (in German).

8. Robinson D. J. S. The structure of finite groups in which permutability is a transitive relation. Journal of the Australian Mathematical Society, 2001, vol. 70, no. 2, pp. 143–160. https://doi.org/10.1017/s1446788700002573

9. Skiba A. N. Some characterizations of finite σ-soluble PσT-groups. Journal of Algebra, 2018, vol. 495, no. 1, pp. 114–129. https://doi.org/10.1016/j.jalgebra.2017.11.009

10. Safonova I. N., Skiba A. N. Finite groups in which generalized normality is a transitive relation. Cornell University Library, arXiv: 2302.13250v1 [math.GR] 26 Feb. 2023. 47 p. https://doi.org/10.48550/arXiv.2302.13250

11. Schmidt R. Subgroup Lattices of Groups. Berlin, 1994. https://doi.org/10.1515/9783110868647

12. Hu B., Huang J., Skiba A. N. A generalisation of finite PT-groups. Bulletin of the Australian Mathematical Society, 2018, vol. 97, no. 3, pp. 396–405. https://doi.org/10.1017/s0004972717001083

13. Zhang C., Guo W., Liu A-M. On a generalisation of finite T-groups. Communications in Mathematics and Statistics, 2022, vol. 10, pp. 153–162. https://doi.org/10.1007/s40304-021-00240-z

14. Zacher G. I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 1964, vol. 37, no. 8, pp. 150–154.

15. Ballester-Bolinches A., Pedraza-Aguilera M. C., Pérez-Calabuing V. On two classes of generalised T-groups. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2023, vol. 117, art. 105. https://doi.org/10.1007/s13398-023-01443-5


Review

Views: 172


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-8323 (Print)
ISSN 2524-2431 (Online)