On some classes of finite σ-soluble PσT-groups
https://doi.org/10.29235/1561-83232023-67-6-460-464
Abstract
Let X be a class of groups. Suppose that with each group G ∈ X we associate some system of its subgroups τ(G). Then τ is said to be a subgroup functor on X if the following conditions are hold: (1) G ∈ τ(G) for each group G ∈ X; (2) for any epimorphism φ: A → B, where A, B ∈ X, and for any groups H ∈ τ(A) and T ∈ τ(B) we have Hφ ∈ τ(B) and Tφ-1 ∈ τ( A). In this paper, were considered some applications of such subgroup functors in the theory of finite groups in which generalized normality for subgroups is transitive.
About the Authors
I. N. SafonovaBelarus
Safonova Inna N. – Ph. D. (Physics and Mathematics), Associate Professor.
4, Nezavisimosti Ave., 220030, Minsk
A. N. Skiba
Belarus
Skiba Alexander N. – D. Sc. (Physics and Mathematics), Professor.
104, Sovetskaya Str., 246019, Gomel
References
1. Skiba A. N. On σ-subnormal and σ-permutable subgroups of finite groups. Journal of Algebra, 2015, vol. 436, no. 8, pp. 1–16. https://doi.org/10.1016/j.jalgebra.2015.04.010
2. Skiba A. N. A generalization of a Hall theorem. Journal of Algebra and its Applications, 2016, vol. 15, no. 5, pp. 21–36. https://doi.org/10.1142/s0219498816500857
3. Skiba A. N. Algebra of formations. Minsk, 1997. 240 p. (in Russian).
4. Kamornikov S. F., Selkin M. V. Subgroup functors and classes of finite groups. Minsk, 2003. 254 p. (in Russian).
5. Guo W. Structure Theory for Canonical Classes of Finite Groups. Heidelberg, New York, Dordrecht, London, 2015. 359 p. https://doi.org/10.1007/978-3-662-45747-4
6. Vorob’ev N. N. Algebra of Classes of Finite Groups. Vitebsk, 2012. 322 p. (in Russian).
7. Gaschütz W. Gruppen, in denen das Normalteilersein transitiv ist. Journal für die reine und angewandte Mathematik, 1957, vol. 198, pp. 87–92 (in German).
8. Robinson D. J. S. The structure of finite groups in which permutability is a transitive relation. Journal of the Australian Mathematical Society, 2001, vol. 70, no. 2, pp. 143–160. https://doi.org/10.1017/s1446788700002573
9. Skiba A. N. Some characterizations of finite σ-soluble PσT-groups. Journal of Algebra, 2018, vol. 495, no. 1, pp. 114–129. https://doi.org/10.1016/j.jalgebra.2017.11.009
10. Safonova I. N., Skiba A. N. Finite groups in which generalized normality is a transitive relation. Cornell University Library, arXiv: 2302.13250v1 [math.GR] 26 Feb. 2023. 47 p. https://doi.org/10.48550/arXiv.2302.13250
11. Schmidt R. Subgroup Lattices of Groups. Berlin, 1994. https://doi.org/10.1515/9783110868647
12. Hu B., Huang J., Skiba A. N. A generalisation of finite PT-groups. Bulletin of the Australian Mathematical Society, 2018, vol. 97, no. 3, pp. 396–405. https://doi.org/10.1017/s0004972717001083
13. Zhang C., Guo W., Liu A-M. On a generalisation of finite T-groups. Communications in Mathematics and Statistics, 2022, vol. 10, pp. 153–162. https://doi.org/10.1007/s40304-021-00240-z
14. Zacher G. I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 1964, vol. 37, no. 8, pp. 150–154.
15. Ballester-Bolinches A., Pedraza-Aguilera M. C., Pérez-Calabuing V. On two classes of generalised T-groups. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2023, vol. 117, art. 105. https://doi.org/10.1007/s13398-023-01443-5