1. Carey J. E., Crouch C. H., Shen M., Mazur E. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Optics Letters, 2005, vol. 30, no. 14, pp. 1773-1775. https://doi.org/10.1364/ol.30.001773
2. Ertekin E., Winkler M. T., Recht D., Said A. J., Aziz M. J., Buonassisi T., Grossman J. C. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Physical Review Letters, 2012, vol. 108, no. 2, art. 026401. https://doi.org/10.1103/physrevlett.108.026401
3. Komarov F., Ivlev G., Zayats G., Komarov A., Nechaev N., Parkhomenko I., Vlasukova L., Wendler E., Miskiewicz S. Experimental study and modeling of silicon supersaturated with selenium by ion implantation and nanosecond-laser melting. Acta Physica Polonica A, 2019, vol. 136, no. 2, pp. 254-259. https://doi.org/10.12693/aphyspola.136.254
4. Komarov F. F., Nechaev N. S., Ivlev G. D., Vlasukova L. A., Parkhomenko I. N., Wendler E., Romanov I. A., Berencén Y., Pilko V. V., Zhigulin D. V., Komarov A. F. Structural and optical properties of Si hyperdoped with Te by ion implantation and pulsed laser annealing. Vacuum, 2020, vol. 178, art. 109434. https://doi.org/10.1016/j.vacuum.2020.109434
5. Yang W., Lim S. Q., Williams J. S. Chapter 8 - Optical hyperdoping. Cristiano F., La Magna A. (eds.). Laser Annealing Processes in Semiconductor Technology. Cambridge, Woodhead Publishing, 2021, pp. 353-356. https://doi.org/10.1016/c2019-0-01254-x
6. Nakashima H., Hashimoto K. Deep impurity levels and diffusion coefficient of manganese in silicon. Journal of Applied Physics, 1991, vol. 69, no. 3, pp. 1440-1445. https://doi.org/10.1063/1.347285
7. Naito M., Nakanishi R., Machida N., Shigematsu T., Ishimaru M., Valdez J. A., Sickafus K. E. Growth of higher manganese silicides from amorphous manganese-silicon layers synthesized by ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, vol. 272, no. 1, pp. 446-449. https://doi.org/10.1016/j.nimb.2011.01.120
8. Ziegler J. F., Ziegler M. D., Biersack J. P. SRIM - The stopping and range of ions in matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, vol. 268, no. 11-12, pp. 1818- 1823. https://doi.org/10.1016/j.nimb.2010.02.091
9. Feldman L. C., Mayer J. W., Picraux S. T. Materials analysis by ion channeling: submicron crystallography. Academic Press, 2012. 320 p.
10. Weber E. R. Transition metals in silicon. Applied Physics A, 1983, vol. 30, pp. 1-22. https://doi.org/10.1007/bf00617708
11. Stümpel H., Vorderwülbecke M., Mimkes J. Diffusion of selenium and tellurium in silicon. Applied Physics A, 1988, vol. 46, pp 159-163. https://doi.org/10.1007/bf00939258
12. Poborchii V., Tada T., Kanayama T. Study of stress in a shallow-trench-isolated Si structure using polarized confocal near-UV Raman microscopy of its cross section. Applied Physics Letters, 2007, vol. 91, no. 24, art. 241902. https://doi.org/10.1063/1.2825286
13. Haberfehlner G., Smith M. J., Idrobo J.-C., Auvert G., Sher M.-J., Winkler M. T., Mazur E., Gambacorti N., Gradečak S., Bleuet P. Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography. Microscopy and Microanalysis, 2013, vol. 19, no. 3, pp. 716-725. https://doi.org/10.1017/s1431927613000342
14. Mott N. F. Metal-insulator transitions. Contemporary Physics, 1973, vol. 14, no. 5, pp. 401-413. https://doi.org/10.1080/00107517308210764
15. Schubert E. F. Doping in III-V semiconductors. Cambridge, Cambridge University Press, 1993. 606 p. https://doi.org/10.1017/cbo9780511599828
16. Zhou S., Liu F., Prucnal S., Gao K., Khalid M., Baehtz C., Posselt M., Skorupa W., Helm M. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy. Scientific Reports, 2015, vol. 5, no. 1, pp. 1773-1775. https://doi.org/10.1038/srep08329
17. Janzén E., Stedman R., Grossmann G., Grimmeiss H. G. High-resolution studies of sulfur- and selenium-related donor centers in silicon. Physical Review B, 1984, vol. 29, no. 4, pp. 1907-1918. https://doi.org/10.1103/physrevb.29.1907