Silicon hyperdoping using selenium and manganese ion implantation and pulsed laser annealing
https://doi.org/10.29235/1561-8323-202468-2-112-117
Abstract
The effect of pulsed laser annealing (PLA) on the structure and optical properties of Mn-, Seand (Mn+Se)implanted silicon layers was studied. 95 keV Mn+ and 200 keV Se+ ions were implanted separately and together into p-type Si wafers up to the fluence 1 · 1016 cm–2 at room temperature. Then, the samples were irradiated in the ambient air with a single 2 J/cm2 ruby laser pulse. The detailed redistribution of Mn and Se atoms in the implanted layers during PLA was examined using Rutherford backscattering spectroscopy in random and channeling configuration. It was found that a notable percentage of implanted manganese atoms diffuses to the silicon surface, while the Se concentration depth profile broadens in both directions after PLA. Mn co-implantation enhances the Se diffusion to the surface, which leads to a Se decrease in crystalline silicon, but it does improve the crystal structure of the implanted silicon layer due to the increase of diffusion velocity. In contrast to the Mn-implanted sample, Se-implanted and (Mn+Se)-co-implanted samples after PLA exhibit strong optical absorption in the infrared range. The observed band at 0.6 eV is associated with electronic transitions from the intermediate band to the lowest energy levels of the conduction band.
About the Authors
Ting WangBelarus
Postgraduate Student
4, Nezavisimosti Ave., 220030, Minsk
F. F. Komarov
Belarus
Komarov Fadei F. – Academician, D. Sc. (Physics and Mathematics), Professor
7, Kurchatov Str., 220045, Minsk
I. N. Parkhomenko
Belarus
Parkhomenko Irina N. – Ph. D. (Physics and Mathematics), Leading Researcher
5, Kurchatov Str., 220108, Minsk
Guofeng Yang
China
D. Sc., Professor
1800, Lihu Avenue, 214122, Wuxi
Junjun Xue
China
Ph. D., Associate Professor
9, Wenyuan Road, 210023, Nanjing
References
1. Carey J. E., Crouch C. H., Shen M., Mazur E. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Optics Letters, 2005, vol. 30, no. 14, pp. 1773–1775. https://doi.org/10.1364/ol.30.001773
2. Ertekin E., Winkler M. T., Recht D., Said A. J., Aziz M. J., Buonassisi T., Grossman J. C. Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Physical Review Letters, 2012, vol. 108, no. 2, art. 026401. https://doi.org/10.1103/physrevlett.108.026401
3. Komarov F., Ivlev G., Zayats G., Komarov A., Nechaev N., Parkhomenko I., Vlasukova L., Wendler E., Miskiewicz S. Experimental study and modeling of silicon supersaturated with selenium by ion implantation and nanosecond-laser melting. Acta Physica Polonica A, 2019, vol. 136, no. 2, pp. 254–259. https://doi.org/10.12693/aphyspola.136.254
4. Komarov F. F., Nechaev N. S., Ivlev G. D., Vlasukova L. A., Parkhomenko I. N., Wendler E., Romanov I. A., Berencén Y., Pilko V. V., Zhigulin D. V., Komarov A. F. Structural and optical properties of Si hyperdoped with Te by ion implantation and pulsed laser annealing. Vacuum, 2020, vol. 178, art. 109434. https://doi.org/10.1016/j.vacuum.2020.109434
5. Yang W., Lim S. Q., Williams J. S. Chapter 8 – Optical hyperdoping. Cristiano F., La Magna A. (eds.). Laser Annealing Processes in Semiconductor Technology. Cambridge, Woodhead Publishing, 2021, pp. 353–356. https://doi.org/10.1016/c2019-0-01254-x
6. Nakashima H., Hashimoto K. Deep impurity levels and diffusion coefficient of manganese in silicon. Journal of Applied Physics, 1991, vol. 69, no. 3, pp. 1440–1445. https://doi.org/10.1063/1.347285
7. Naito M., Nakanishi R., Machida N., Shigematsu T., Ishimaru M., Valdez J. A., Sickafus K. E. Growth of higher manganese silicides from amorphous manganese-silicon layers synthesized by ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, vol. 272, no. 1, pp. 446–449. https://doi.org/10.1016/j.nimb.2011.01.120
8. Ziegler J. F., Ziegler M. D., Biersack J. P. SRIM – The stopping and range of ions in matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, vol. 268, no. 11–12, pp. 1818– 1823. https://doi.org/10.1016/j.nimb.2010.02.091
9. Feldman L. C., Mayer J. W., Picraux S. T. Materials analysis by ion channeling: submicron crystallography. Academic Press, 2012. 320 p.
10. Weber E. R. Transition metals in silicon. Applied Physics A, 1983, vol. 30, pp. 1–22. https://doi.org/10.1007/bf00617708
11. Stümpel H., Vorderwülbecke M., Mimkes J. Diffusion of selenium and tellurium in silicon. Applied Physics A, 1988, vol. 46, pp 159–163. https://doi.org/10.1007/bf00939258
12. Poborchii V., Tada T., Kanayama T. Study of stress in a shallow-trench-isolated Si structure using polarized confocal near-UV Raman microscopy of its cross section. Applied Physics Letters, 2007, vol. 91, no. 24, art. 241902. https://doi.org/10.1063/1.2825286
13. Haberfehlner G., Smith M. J., Idrobo J.-C., Auvert G., Sher M.-J., Winkler M. T., Mazur E., Gambacorti N., Gradečak S., Bleuet P. Selenium segregation in femtosecond-laser hyperdoped silicon revealed by electron tomography. Microscopy and Microanalysis, 2013, vol. 19, no. 3, pp. 716–725. https://doi.org/10.1017/s1431927613000342
14. Mott N. F. Metal-insulator transitions. Contemporary Physics, 1973, vol. 14, no. 5, pp. 401–413. https://doi.org/10.1080/00107517308210764
15. Schubert E. F. Doping in III–V semiconductors. Cambridge, Cambridge University Press, 1993. 606 p. https://doi.org/10.1017/cbo9780511599828
16. Zhou S., Liu F., Prucnal S., Gao K., Khalid M., Baehtz C., Posselt M., Skorupa W., Helm M. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy. Scientific Reports, 2015, vol. 5, no. 1, pp. 1773–1775. https://doi.org/10.1038/srep08329
17. Janzén E., Stedman R., Grossmann G., Grimmeiss H. G. High-resolution studies of sulfur- and selenium-related donor centers in silicon. Physical Review B, 1984, vol. 29, no. 4, pp. 1907–1918. https://doi.org/10.1103/physrevb.29.1907